mkl_?csrsv
mkl_?csrsv
Solves a system of linear equations for a sparse matrix in the CSR format (deprecated).
Syntax
void
mkl_scsrsv
(
const
char
*transa
,
const
MKL_INT
*m
,
const
float
*alpha
,
const
char
*matdescra
,
const
float
*val
,
const
MKL_INT
*indx
,
const
MKL_INT
*pntrb
,
const
MKL_INT
*pntre
,
const
float
*x
,
float
*y
);
void
mkl_dcsrsv
(
const
char
*transa
,
const
MKL_INT
*m
,
const
double
*alpha
,
const
char
*matdescra
,
const
double
*val
,
const
MKL_INT
*indx
,
const
MKL_INT
*pntrb
,
const
MKL_INT
*pntre
,
const
double
*x
,
double
*y
);
void
mkl_ccsrsv
(
const
char
*transa
,
const
MKL_INT
*m
,
const
MKL_Complex8
*alpha
,
const
char
*matdescra
,
const
MKL_Complex8
*val
,
const
MKL_INT
*indx
,
const
MKL_INT
*pntrb
,
const
MKL_INT
*pntre
,
const
MKL_Complex8
*x
,
MKL_Complex8
*y
);
void
mkl_zcsrsv
(
const
char
*transa
,
const
MKL_INT
*m
,
const
MKL_Complex16
*alpha
,
const
char
*matdescra
,
const
MKL_Complex16
*val
,
const
MKL_INT
*indx
,
const
MKL_INT
*pntrb
,
const
MKL_INT
*pntre
,
const
MKL_Complex16
*x
,
MKL_Complex16
*y
);
Include Files
- mkl.h
Description
This routine is deprecated. Use mkl_sparse_?_trsvfrom the Inspector-executor Sparse BLAS interface instead.
Intel® oneAPI Math Kernel Library
The
mkl_?csrsv
routine solves a system of linear equations with matrix-vector operations for a sparse matrix in the CSR format: y := alpha*inv(A)*x
or
y := alpha*inv(AT)*x,
where:
alpha
is scalar, x
and y
are vectors, A
is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, A
T
is the transpose of A
.This routine supports a CSR format both with one-based indexing and zero-based indexing.
Input Parameters
- transa
- Specifies the system of linear equations.Ifortransa='N''n', theny:=alpha*inv(A)*xIfortransa='T''t'or'C'or'c', then,y:=alpha*inv(AT)*x
- m
- Number of columns of the matrixA.
- alpha
- Specifies the scalaralpha.
- matdescra
- Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given inTable “Possible Values of the Parameter. Possible combinations of element values of this parameter are given inmatdescra(descra)”Table “Possible Combinations of Element Values of the Parameter.matdescra”
- val
- Array containing non-zero elements of the matrixA.Its length is.pntre[m- 1] -pntrb[0]Refer tovaluesarray description in CSR Format for more details.The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.
- indx
- For one-based indexing, array containing the column indices plus one for each non-zero element of the matrixA. For zero-based indexing, array containing the column indices for each non-zero element of the matrixA.Its length is equal to length of thevalarray.Refer tocolumnsarray description in CSR Format for more details.Column indices must be sorted in increasing order for each row.
- pntrb
- Array of lengthm.This array contains row indices, such thatis the first index of rowpntrb[i] -pntrb[0]iin the arraysvalandindx.Refer topointerbarray description in CSR Format for more details.
- pntre
- Array of lengthm.This array contains row indices, such thatis the last index of rowpntre[i] -pntrb[0] - 1iin the arraysvalandindx.Refer topointerEarray description in CSR Format for more details.
- x
- Array, size at leastm.On entry, the arrayxmust contain the vectorx. The elements are accessed with unit increment.
- y
- Array, size at leastm.On entry, the arrayymust contain the vectory. The elements are accessed with unit increment.
Output Parameters
- y
- Contains solution vectorx.