Developer Reference

  • 0.10
  • 10/21/2020
  • Public Content
Contents

p?lantr

Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of a triangular matrix.

Syntax

float
pslantr
(
char
*norm
,
char
*uplo
,
char
*diag
,
MKL_INT
*m
,
MKL_INT
*n
,
float
*a
,
MKL_INT
*ia
,
MKL_INT
*ja
,
MKL_INT
*desca
,
float
*work
);
double
pdlantr
(
char
*norm
,
char
*uplo
,
char
*diag
,
MKL_INT
*m
,
MKL_INT
*n
,
double
*a
,
MKL_INT
*ia
,
MKL_INT
*ja
,
MKL_INT
*desca
,
double
*work
);
float
pclantr
(
char
*norm
,
char
*uplo
,
char
*diag
,
MKL_INT
*m
,
MKL_INT
*n
,
MKL_Complex8
*a
,
MKL_INT
*ia
,
MKL_INT
*ja
,
MKL_INT
*desca
,
float
*work
);
double
pzlantr
(
char
*norm
,
char
*uplo
,
char
*diag
,
MKL_INT
*m
,
MKL_INT
*n
,
MKL_Complex16
*a
,
MKL_INT
*ia
,
MKL_INT
*ja
,
MKL_INT
*desca
,
double
*work
);
Include Files
  • mkl_scalapack.h
Description
The
p?lantr
function
returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular distributed matrix
sub(
A
)
=
A
(
ia
:
ia
+
m
-1
,
ja
:
ja
+
n
-1)
.
Input Parameters
norm
(global) Specifies what value is returned by the
function
:
=
'M'
or
'm':
val
=
max
(
abs
(
A
ij
))
, largest absolute value of the matrix
A
, it s not a matrix norm.
=
'1'
or
'O'
or
'o':
val
=
norm1
(
A
)
, 1-norm of the matrix
A
(maximum column sum),
=
'I'
or
'i':
val
=
normI
(
A
)
, infinity norm of the matrix
A
(maximum row sum),
=
'F'
,
'f'
,
'E'
or
'e':
val
=
normF
(
A
)
, Frobenius norm of the matrix
A
(square root of sum of squares).
uplo
(global)
Specifies whether the upper or lower triangular part of the symmetric matrix sub(
A
) is to be referenced.
=
'U'
: Upper trapezoidal,
=
'L'
: Lower trapezoidal.
Note that sub(
A
) is triangular instead of trapezoidal if
m
=
n
.
diag
(global)
Specifies whether the distributed matrix sub(
A
) has unit diagonal.
=
'N'
: Non-unit diagonal.
=
'U'
: Unit diagonal.
m
(global)
The number of rows in the distributed matrix sub(
A
). When
m
= 0
,
p?lantr
is set to zero.
m
0
.
n
(global)
The number of columns in the distributed matrix sub(
A
). When
n
= 0
,
p?lantr
is set to zero.
n
0
.
a
(local).
Pointer into the local memory to an array of size
lld_a
*
LOCc
(
ja
+
n
-1)
containing the local pieces of the distributed matrix sub(
A
).
ia
,
ja
(global)
The row and column indices in the global matrix
A
indicating the first row and the first column of the matrix sub(
A
), respectively.
desca
(global and local) array of size
dlen_
. The array descriptor for the distributed matrix A.
work
(local).
Array size
lwork
.
lwork
0
if
norm
=
'M'
or
'm'
(not referenced),
nq
0 if
norm
= '1',
'O'
or
'o'
,
mp
0 if
norm
=
'I'
or
'i'
,
0 if
norm
=
'F'
,
'f'
,
'E'
or
'e'
(not referenced),
iroffa
= mod(
ia
-1,
mb_a
)
,
icoffa
= mod(
ja
-1,
nb_a
)
,
iarow
=
indxg2p
(
ia
,
mb_a
,
myrow
,
rsrc_a
,
nprow
),
iacol
=
indxg2p
(
ja
,
nb_a
,
mycol
,
csrc_a
,
npcol
)
,
mp
0 =
numroc
(
m
+
iroffa
,
mb_a
,
myrow
,
iarow
,
nprow
)
,
nq
0 =
numroc
(
n
+
icoffa
,
nb_a
,
mycol
,
iacol
,
npcol
)
,
indxg2p
and
numroc
are ScaLAPACK tool functions;
myrow
,
mycol
,
nprow
, and
npcol
can be determined by calling the
function
blacs_gridinfo
.
Output Parameters
val
The value returned by the
function
.

Product and Performance Information

1

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserverd for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804