Developer Reference

  • 0.9
  • 09/09/2020
  • Public Content
Contents

v?Sinh

Computes hyperbolic sine of vector elements.

Syntax

vsSinh
(
n
,
a
,
y
)
;
vsSinhI(n, a, inca, y, incy);
vmsSinh
(
n
,
a
,
y
,
mode
)
;
vmsSinhI(n, a, inca, y, incy, mode);
vdSinh
(
n
,
a
,
y
)
;
vdSinhI(n, a, inca, y, incy);
vmdSinh
(
n
,
a
,
y
,
mode
)
;
vmdSinhI(n, a, inca, y, incy, mode);
vcSinh
(
n
,
a
,
y
)
;
vcSinhI(n, a, inca, y, incy);
vmcSinh
(
n
,
a
,
y
,
mode
)
;
vmcSinhI(n, a, inca, y, incy, mode);
vzSinh
(
n
,
a
,
y
)
;
vzSinhI(n, a, inca, y, incy);
vmzSinh
(
n
,
a
,
y
,
mode
)
;
vmzSinhI(n, a, inca, y, incy, mode);
Include Files
  • mkl.h
Input Parameters
Name
Type
Description
n
const MKL_INT
Specifies the number of elements to be calculated.
a
const float*
for
vsSinh
,
vmsSinh
const double*
for
vdSinh
,
vmdSinh
const MKL_Complex8*
for
vcSinh
,
vmcSinh
const MKL_Complex16*
for
vzSinh
,
vmzSinh
Pointer to an array that contains the input vector
a
.
inca
,
incy
const MKL_INT
Specifies increments for the elements of
a
and
y
.
mode
const MKL_INT64
Overrides global VM mode setting for this function call. See
vmlSetMode
for possible values and their description.
Precision Overflow Thresholds for Real
v?Sinh
Function
Data Type
Threshold Limitations on Input Parameters
single precision
-Ln(FLT_MAX)-Ln2 <
a
[i] < Ln(FLT_MAX)+Ln2
double precision
-Ln(DBL_MAX)-Ln2 <
a
[i] < Ln(DBL_MAX)+Ln2
Precision overflow thresholds for the complex
v?Sinh
function are beyond the scope of this document.
Output Parameters
Name
Type
Description
y
float*
for
vsSinh
,
vmsSinh
double*
for
vdSinh
,
vmdSinh
MKL_Complex8*
for
vcSinh
,
vmcSinh
MKL_Complex16*
for
vzSinh
,
vmzSinh
Pointer to an array that contains the output vector
y
.
Description
The
v?Sinh
function computes hyperbolic sine of vector elements.
Special Values for Real Function
v?Sinh(x)
Argument
Result
VM Error Status
Exception
+0
+0
 
 
-0
-0
 
 
X > overflow
+
VML_STATUS_OVERFLOW
OVERFLOW
X < -overflow
-
VML_STATUS_OVERFLOW
OVERFLOW
+
+
 
 
-
-
 
 
QNAN
QNAN
 
 
SNAN
QNAN
 
INVALID
See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function
v?Sinh(z)
RE(z)
i
·
IM(z)
-
 
-X
 
-0
 
+0
 
+X
 
+
 
NAN
 
+i
·
-
+i
·
QNAN
INVALID
QNAN+i
·
QNAN
INVALID
-0+i
·
QNAN
INVALID
+0+i
·
QNAN
INVALID
QNAN+i
·
QNAN
INVALID
+
+i
·
QNAN
INVALID
QNAN+i
·
QNAN
+i
·
Y
-
·
Cos(Y)+ i
·
·
Sin(Y)
+
·
CIS(Y)
QNAN+i
·
QNAN
+i
·
0
-
+i
·
0
-0+i
·
0
+0+i
·
0
+
+i
·
0
QNAN+i
·
0
-i
·
0
-
-i
·
0
-0-i
·
0
+0-i
·
0
+
-i
·
0
QNAN-i
·
0
-i
·
Y
-
·
Cos(Y)+ i
·
·
Sin(Y)
+
·
CIS(Y)
QNAN+i
·
QNAN
-i
·
-
+i
·
QNAN
INVALID
QNAN+i
·
QNAN
INVALID
-0+i
·
QNAN
INVALID
+0+i
·
QNAN
INVALID
QNAN+i
·
QNAN
INVALID
+
+i
·
QNAN
INVALID
QNAN+i
·
QNAN
+i
·
NAN
-
+i
·
QNAN
QNAN+i
·
QNAN
-0+i
·
QNAN
+0+i
·
QNAN
QNAN+i
·
QNAN
+
+i
·
QNAN
QNAN+i
·
QNAN
Notes:
  • raises the
    INVALID
    exception when the real or imaginary part of the argument is
    SNAN
  • raises the
    OVERFLOW
    exception and sets the VM Error Status to
    VML_STATUS_OVERFLOW
    in the case of overflow, that is, when
    RE(z)
    ,
    IM(z)
    are finite non-zero numbers, but the real or imaginary part of the exact result is so large that it does not meet the target precision.
  • Sinh(CONJ(z))=CONJ(Sinh(z))
  • Sinh(-z)=-Sinh(z)
    .

Product and Performance Information

1

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804