Intel ${ }^{\oplus}$ Quark ${ }^{\text {™ }}$ Microcontroller D2000
 Development Platform

Hardware Manual

September 2016

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting: http://www.intel.com/design/literature.htm

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at http://www.intel.com/ or from the OEM or retailer.

No computer system can be absolutely secure.

Intel, Intel Quark, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2016, Intel Corporation. All rights reserved.

Contents

1.0 I ntroduction 5
1.1 Terminology 5
2.0 Development Platform 7
2.1 Overview 7
2.1.1 Arduino Shield Sockets Note 8
2.1.2 Internal Oscillator Trim Codes 8
2.2 Handling the Development Board 9
2.3 General Assumptions 9
2.4 Floor Plan 11
2.5 Development Platform Pin Muxing 12
2.6 Development Platform Jumper Connections. 15
2.6.1 J1 Jumper 15
2.6.2 J5 Jumper 15
2.6.3 J 24 Jumper 15
2.6.4 J26 Jumper 16
2.6.5 J27 Jumper. 16

Figures

Figure 1. Block Diagram 10
Figure 2. PCB Floor Plan 11

Tables

Table 1. Terminology 5
Table 2 Kits Affected 8
Table 3. Development Board Pin Mapping 12
Table 4. J1 Jumper 15
Table 5. J5 Jumper 15
Table 6. J 24 J umper 15
Table 7. J 26 Jumper 16
Table 8. J27 Jumper 16

Revision History

Date	Revision	Description
September 2016	005	Added note on internal oscillator trim codes and updates based on user feedback.
May 2016	004	Updated sections 1 and 2.
March 2016	003	Updated table 2 with booster pack pins.
February 2016	002	Updated for development platform.
December 2015	001	Initial release.

1.0 Introduction

This document describes the Intel ${ }^{\oplus}$ Quark ${ }^{T M}$ microcontroller D2000 SoC based development board that is contained in the Intel ${ }^{\circledR}$ Quark ${ }^{\text {TM }}$ microcontroller Developer Kit D2000 (MM 948988) and the Intel ${ }^{\oplus}$ Quark ${ }^{T M}$ microcontroller Evaluation Kit D2000 (MM 951244).

1.1 Terminology

Table 1. Terminology

Acronym	
ADC	Analog-to-Digital Converter
AIN	Analog Input
AREF	Analogue Reference Voltage Input
BGA	Ball Grid Array
BSP	Coard Support Package - Refers to OS + Device Drivers
COMP	Clock
CLK	Customer Reference Board
CRB	Direct Current
CTS	Double Data Rate
DC	Digital Input / Output
DDR	Digital OUT
DIO	Electrostatic Discharge
DOUT	Ground
EFI	General-Purpose Input / Output
ESD	Hardware
GND	Inter-Integrated Circuit
GPIO	Intel Architecture
HW	In-Circuit Serial Programming
I $^{2} C$	Input/Output Reference Voltage Input
IA	Micro Controller Unit
ICSP	
IOREF	JTAG

Acronym	
MISO	Master In Slave Out
MOSI	Master Out Slave In
NC	Not Connected
OTP	One-Time Programming
PCB	Pulse Width Modulation
PWM	Request To Sen
RTC	Receive Data
RTS	Serial Clock
RXD	Chip Select
SCK	Serial Clock
SCS	Serial Data
SCLK	System on Chip
SDA	Serial Peripheral Interface Bus
SoC	Slave Select
SPI	Static Random Access Memory
SS	JTAG (Test) Clock
SRAM	JTAG (Test) Chain In
TCK	JTAG (Test) Chain Data Out
TDI	JTAG (Test) Chain Mode Select
TDO	JTAG (Test) Chain Reset
TMS	Universal Asynchronous Receiver/Transmitter
TRST	TXD
UART	USB

2.0 Development Platform

2.1 Overview

The Intel ${ }^{\circledR}$ Quark ${ }^{™}$ Microcontroller D2000 Development Board is a versatile platform targeted towards Internet of Things developers.

Intel ${ }^{\circledR}$ Quark ${ }^{\text {™ }}$ microcontroller D2000 features:

- Intel ${ }^{\circledR}$ Quark ${ }^{\text {TM }}$ microcontroller D2000 SoC 32 MHz
- 32KB flash memory (internal)
- 8 KB OTP flash (internal)
- 4 KB data flash (internal)
- 8KB SRAM (internal)
- $1 \times I^{2} \mathrm{C}$ (Master/Slave)
- $1 \times$ SPI master supports up to 4 devices
- 1x SPI slave
- $2 x$ UART - supports 9-bit addressing mode
- 19 ADC/Comparator inputs
- 2x PWM signals
- 25 GPIOs
- Real-time clock
- Watchdog timer

Intel ${ }^{\circledR}$ Quark ${ }^{T M}$ microcontroller D2000 development platform main expansion options:

- "Arduino Uno" like SIL sockets (3.3V IO only) (see section 2.1.2)
- Booster pack like SIL headers (3.3V IO only)

On-board components:

- 6-axis Accelerometer / Magnetometer with temperature sensor
- UART/JTAG to USB convert for USB debug port

Other connectors include:

- $1 \times$ USB 2.0 Device Port - micro Type B
- On-board coin cell battery holder (type CR2032)
- 5V input a screw terminal/header (external power or Li-ion)

Power sources for this platform:

- External (2.5V-5V) DC input
- USB power (5V) - via debug port
- Coin cell battery (type CR2032 not supplied)

2.1.1 Arduino Shield Sockets Note

The Intel ${ }^{\ominus}$ Quark ${ }^{\text {mim }}$ Microcontroller D2000 Development Platform supports the familiar open standard Arduino Uno Rev 3.0 physical interface and is mechanically compatible with Uno Rev 3.0.

- Each functional I/O can be configured to provide the same function that is supported on the Arduino Uno Rev 3.0 with the exception of the PWM capability which can only be supported on IO6 and IO9.
- The developer platform supports 3.3 VIO operation only and is not 5 V tolerant.
- VIN Pin is not supported.
- The 6 pin ICSP Header is not supported.

The purpose of supporting the Arduino Uno Rev3.0 form factor is to enable rapid hardware prototyping through leveraging the existing ecosystem of 3.3 v Arduino Shields or the Arduino compatible prototyping shields. Software compatibility of any Arduino shield is not assumed and would be the responsibility of the developer to produce the appropriate code.

2.1.2 Internal Oscillator Trim Codes

Certain early build versions of the D2000 Development Platform used Intel ${ }^{\oplus}$ Quark ${ }^{m "}$ Microcontroller D2000 devices that did not have the internal oscillator trim codes programmed into them. The effect of using an MCU with untrimmed silicon oscillators means the operating frequency of the oscillator is not precise. Effects can vary but are not limited to:

- System clock frequency may contain an offset.
- On Self clocked interfaces like UART, the issue can potentially cause unexpected characters on the terminal.
- On Interfaces with a clock the issue can potentially cause unexpected reduction or increase in bandwidth.

The D2000 Developer \& Evaluation Kits affected by this issue have the following serial numbers:

Table 2 Kits Affected

Description	MM\#	Batch Code	Serial Number Range
D2000 Developer Kit	948988	CNHT605001	$160500001-160501000$
D2000 Developer Kit	948988	CNHT615001-CNHT615005	$161501001-161505500$
D2000 Evaluation Kit	951244	CNHT615006	$161505501-161506000$

There are 3 options to resolve the issue of un-programmed trim codes:

1. If the solution design is not sensitive to the problem then there is nothing to do.
2. Use the external platform crystal on the development platform.
3. From Intel ${ }^{\circledR}$ QMSI version 1.1 onwards, trim codes are automatically set through a function in 'rom_startup.c'.

2.2 Handling the Development Board

Electrostatic Discharge (ESD) can damage electronic components. To prevent damage to any printed circuit boards (PCBs), it is important to handle them very carefully. To prevent the development board from bending, keep one hand under the centre of the board to support it when handling. The following measures are generally sufficient to protect your equipment from electric static discharge:

- Use a grounded wrist strap designed to prevent ESD.
- Touch a grounded metal object before removing boards from antistatic bags.
- Handle a board by its edges only; do not touch its components, peripheral chips, memory modules or gold contacts.
- When handling chips or modules, avoid touching their pins.
- Put the board, add-on cards and any peripherals back into their antistatic bags when not in use.

2.3 General Assumptions

This section covers the general Intel ${ }^{\oplus}$ Quark ${ }^{T M}$ microcontroller D2000 module and development board system topology and interface connectivity assumptions.

Figure 1. Block Diagram

2.4 Floor Plan

Figure 2 illustrates the development platform floor plan. The Development Platform $P C B$ dimension is 3.3×2.25 inches.

Figure 2. PCB Floor Plan

2.5 Development Platform Pin Muxing

The Intel ${ }^{\ominus}$ Quark ${ }^{\text {TM }}$ microcontroller D2000 provides flexibility for the platform design in configuring the functional I/Os to convey alternative functions or become GPIOs. The User Mode columns show the alternative microcontroller functions for each pin.
Table 3 presents the Intel ${ }^{\oplus}$ Quark ${ }^{m m}$ Microcontroller D2000 Development Board PIN to Function mapping for this platform.

Table 3. Development Board Pin Mapping

Arduino Pin No.	Arduino Pin Label	CRB Pin Usage	User Mode0	User Mode1	User Mode2	Booster Pack Pin(s)
J1_1	,	3.3 V				
J1_2	d	Address Select Accel/Gyro				
J2_1	GND	GND				$\begin{aligned} & \text { J13_10, } \\ & \text { J21_2, } \\ & \text { J21_3 } \end{aligned}$
J2_2	RTS	USB port / Hdr	$\begin{aligned} & \text { JTAG_TM } \\ & \text { S } \end{aligned}$	GPIO_22	$\begin{aligned} & \text { UART_B_RT } \\ & \text { S } \end{aligned}$	n
J2_3		NC				
J2_4	RXD	USB port / Hdr	$\begin{aligned} & \text { JTAG_TC } \\ & \text { K } \end{aligned}$	GPIO_21	$\begin{aligned} & \text { UART_B_RX } \\ & \mathrm{D} \end{aligned}$	
J2_5	TCD	USB port / Hdr	$\begin{aligned} & \text { JTAG_TR } \\ & \text { ST_N } \end{aligned}$	GPIO_20	$\begin{aligned} & \text { UART_B_TX } \\ & \text { D } \end{aligned}$	
J2 6	CTS	USB port / Hdr	JTAG_TDI	GPIO_23	$\begin{aligned} & \text { UART_B_CT } \\ & \mathrm{S} \end{aligned}$	
J3_1	8	DIO_8	GPIO_9	ADC / COMP9	$\begin{aligned} & \text { SPI_S_MOS } \\ & \text { । } \end{aligned}$	J13_3
J3_2	PWM1	DIO_9	GPIO_24	$\begin{aligned} & \text { LPD_SIG_O } \\ & \text { UT } \end{aligned}$		J13_9
J3_3	$\begin{aligned} & 10 \\ & \text { sso } \end{aligned}$	$\begin{aligned} & \text { SPI_M_SSO / } \\ & \text { DIO } 10 \end{aligned}$	GPIO_0	ADC / COMPO	SPI_M_SSO	J13_2
J3_4	11 MOSI	$\begin{aligned} & \text { SPI_M_MOSI / } \\ & \text { DIO_11 } \end{aligned}$	GPIO_17	ADC / COMP17	$\begin{aligned} & \text { SPI_M_MO } \\ & \text { SI } \end{aligned}$	J13_5
J3_5	12 MISO	$\begin{aligned} & \text { SPI_M_MISO / } \\ & \text { DIO_12 } \end{aligned}$	GPIO_18	ADC / COMP18	$\begin{aligned} & \text { SPI_M_MIS } \\ & \text { O } \end{aligned}$	J13_4
J3_6	$\begin{aligned} & 13 \\ & \text { SCK } \end{aligned}$	$\begin{aligned} & \text { SPI_M_SCLK / } \\ & \text { DIO_13 } \end{aligned}$	GPIO_16	ADC / COMP16	$\begin{aligned} & \text { SPI_M_SCL } \\ & \mathrm{K}_{-} \end{aligned}$	J8_7
J3_7	GND	GND			d	
J3_8	ARF	AREF				
J3_9	SDA	$\begin{aligned} & \text { SDA / AIN_04 / } \\ & \text { DIO_18 } \end{aligned}$	GPIO_7	ADC / COMP7	I2C_SDA	J8_10

Arduino Pin No.	Arduino Pin Label	CRB Pin Usage	User Mode0	User Mode1	User Mode2	Booster Pack Pin(s)
J3_10	SCL	$\begin{aligned} & \text { SCL / AIN_05 / } \\ & \text { DIO_19 } \end{aligned}$	GPIO_6	ADC / COMP6	12C_SCL	J8_9
J4_1	$\begin{aligned} & 0 \text { RX } \\ & \text { [UART_A] } \end{aligned}$	$\begin{aligned} & \text { UART_RXD / } \\ & \text { DIO_0 } \end{aligned}$	GPIO_13	ADC / COMP13	$\begin{aligned} & \text { UART_A_RX } \\ & \text { D } \end{aligned}$	J8_3
J4_2	1 TX [UART_A]	$\begin{aligned} & \text { UART_TXD / } \\ & \text { DIO_1 } \end{aligned}$	GPIO_12	ADC / COMP12	$\begin{aligned} & \text { UART_A_TX } \\ & \text { D } \end{aligned}$	J8_4
J4_3	2	DIO_2	GPIO_11	ADC / COMP11	SPI_S_SCS	J13_7
J4_4	3	DIO_3	GPIO_10	ADC / COMP10	SPI_S_MIS	J13_1
J4_5	4	DIO_4	GPIO_5	ADC / COMP5	$\begin{aligned} & \text { SYS_CLK_O } \\ & \text { UT } \end{aligned}$	J8_8
J4_6	5	DIO_5	GPIO_2	ADC / COMP2	SPI_M_SS2	J8_5
J4_7	6 PWMO	$\begin{aligned} & \text { USB port / } \\ & \text { DIO_6 } \end{aligned}$	$\begin{aligned} & \text { JTAG_TD } \\ & 0 \end{aligned}$	GPIO_19	PWMO	
J4_8	7	DIO_7	GPIO_8	ADC / COMP8	SPI_S_SCLK	
J22_1	NC	NC				
J22_2	IOREF	IOREF				
J22_3	RESET	RESET_N	RESET_N	A		J13_6
J22_4	3.3 V	3.3 V				$\begin{aligned} & \text { J8_1, } \\ & \text { J21_1 } \end{aligned}$
J22_5	5 V	5 V	de			
J22_6	GND	GND				
J22_7	GND	GND				
J22_8	NC	NC			0	
J23_1	AO	AIN_0	GPIO_3	ADC / COMP3	SPI_M_SS3	J13_8
J23_2	A1	AIN_1	GPIO_4	ADC / COMP4	$\begin{aligned} & \text { RTC_CLK_O } \\ & \text { UT } \end{aligned}$	J8_6
J23_3	A2	AIN_2	GPIO_14	ADC / COMP14	$\begin{aligned} & \text { UART_A_RT } \\ & \text { S/ } \\ & \text { UART_A_DE } \end{aligned}$	J8_2
J23_4	А3	AIN_3	GPIO_15	ADC / COMP15	$\begin{aligned} & \text { UART_A_CT } \\ & \text { S/ } \\ & \text { UART_A_RE } \end{aligned}$	0
J23_5	A4 SDA	AIN_4				J8_9

Arduino Pin No.	Arduino Pin Label	CRB Pin Usage	User Mode0	User Mode1	User Mode2	Booster Pack Pin(s)
J23_6	A5	AIN_5				J8_10
SCL						

2.6 Development Platform Jumper Connections

This section describes the pin connection options for the various jumpers on the board.

2.6.1 J1 Jumper

Jumper J 1 allows the $\mathrm{I}^{2} \mathrm{C}$ address to be modified; by default the jumper is not connected and the $I^{2} \mathrm{C}$ address is $0 \times 10 \& 0 \times 12$. When the jumper is connected the $I^{2} \mathrm{C}$ address is $0 \times 11 \& 0 \times 13$.

Table 4. J1 Jumper

$J 1$	Pin 1	Pin 2	Description
Not connected			 0×12.
Connected	\checkmark	\checkmark	$1^{2} \mathrm{C}$ address is $0 \times 11 \& 0 \times 13$.

2.6.2 J5 Jumper

Jumper J5 allows the onboard LED to be controlled by either DIO_9 or DIO_13.
Table 5. J5 Jumper

J5	Pin 1	Pin 2	Pin 3	Description
USR	\checkmark	\checkmark		By selecting pins 1 \& 2 on jumper J5, DIO_9 is used to control the LED.
SCK		\checkmark	\checkmark	Selecting pins 2 \& 3 on jumper J5 enables DIO_13 to control the LED.

2.6.3 J24 Jumper

Jumper J24 is connected by default, and connects the SoC power supply. Removing this jumper connection allows external power supply to the SoC or access to measure the current being drawn by the SoC.

Table 6. J24 Jumper

J24	Pin 1	Pin 2	Description
Connected	\checkmark	\checkmark	SoC power supply connected, this is the default.
Not connected			SoC power supply disconnected.

2.6.4 J26 Jumper

Jumper J26 allows the external power source to be set to either USB or external DC input.

Table 7. J26 Jumper

J26	Pin 1	Pin 2	Pin 3	Description
USB	\checkmark	\checkmark		External power taken from connected USB host device 5V, this is the default.
VSEXT		\checkmark	\checkmark	External power from connected DC source 2.5V -5 V.

2.6.5 J27 Jumper

Jumper J27 allows the internal regulator to be activated when an external power source is used (J26 jumper). The regulator will maintain a steady flow of 3.3 V to the platform. If an external power source is being used then pins 1 and 2 on this jumper should be connected, if on board coin cell battery source is being used then pins 2 and 3 on this jumper should be connected.

Table 8. J27 Jumper

J27	Pin 1	Pin 2	Pin 3	Description
3V3	\checkmark	\checkmark		Internal regulator activated to maintain steady flow of power from external power source (USB or external DC input).
BAT		\checkmark	\checkmark	Connected when power is provided via the on board coin cell battery.

