cor_csr_batch.cpp

/* file: cor_csr_batch.cpp */
/*******************************************************************************
* Copyright 2014-2019 Intel Corporation.
*
* This software and the related documents are Intel copyrighted  materials,  and
* your use of  them is  governed by the  express license  under which  they were
* provided to you (License).  Unless the License provides otherwise, you may not
* use, modify, copy, publish, distribute,  disclose or transmit this software or
* the related documents without Intel's prior written permission.
*
* This software and the related documents  are provided as  is,  with no express
* or implied  warranties,  other  than those  that are  expressly stated  in the
* License.
*******************************************************************************/

/*
!  Content:
!    C++ example of correlation matrix computation in the batch
!    processing mode
!
!******************************************************************************/

#include "daal.h"
#include "service.h"

using namespace std;
using namespace daal;
using namespace daal::algorithms;

/* Input data set parameters
   Input matrix is stored in the compressed sparse row format with one-based indexing
 */
const string datasetFileName = "../data/batch/covcormoments_csr.csv";

int main(int argc, char *argv[])
{
    checkArguments(argc, argv, 1, &datasetFileName);

    /* Read datasetFileName from a file and create a numeric table to store input data */
    CSRNumericTablePtr dataTable(createSparseTable<float>(datasetFileName));

    /* Create an algorithm to compute correlation matrix using the default method */
    covariance::Batch<float, covariance::fastCSR> algorithm;
    algorithm.input.set(covariance::data, dataTable);

    /* Set the parameter to choose the type of the output matrix */
    algorithm.parameter.outputMatrixType = covariance::correlationMatrix;

    /* Compute a correlation matrix */
    algorithm.compute();

    /* Get the computed correlation matrix */
    covariance::ResultPtr res = algorithm.getResult();

    printNumericTable(res->get(covariance::correlation), "Correlation matrix (upper left square 10*10) :", 10, 10);
    printNumericTable(res->get(covariance::mean),        "Mean vector:", 1, 10);

    return 0;
}
For more complete information about compiler optimizations, see our Optimization Notice.
Select sticky button color: 
Orange (only for download buttons)