/* file: lin_reg_model_builder.cpp */
* Copyright 2014-2019 Intel Corporation.
* This software and the related documents are Intel copyrighted  materials,  and
* your use of  them is  governed by the  express license  under which  they were
* provided to you (License).  Unless the License provides otherwise, you may not
* use, modify, copy, publish, distribute,  disclose or transmit this software or
* the related documents without Intel's prior written permission.
* This software and the related documents  are provided as  is,  with no express
* or implied  warranties,  other  than those  that are  expressly stated  in the
* License.

!  Content:
!    C++ example of multiple linear regression in the batch processing mode.
!    The program trains the multiple linear regression model on a training data
!    set with a QR decomposition-based method and computes regression for the
!    test data.

#include "daal.h"
#include "service.h"

using namespace std;
using namespace daal;
using namespace daal::algorithms::linear_regression;

/* Input data set parameters */
string trainedModelFileName            = "../data/batch/linear_regression_trained_model.csv";
string testDatasetFileName             = "../data/batch/linear_regression_test.csv";

const size_t nFeatures           = 10;  /* Number of features in training and testing data sets */
const size_t nDependentVariables = 2;   /* Number of dependent variables that correspond to each observation */

ModelPtr buildModel();
void testModel(ModelPtr&);

int main(int argc, char *argv[])
    checkArguments(argc, argv, 2, &trainedModelFileName, &testDatasetFileName);

    ModelPtr builtModel = buildModel();

    return 0;

ModelPtr buildModel()
    /* Initialize FileDataSource<CSVFeatureManager> to retrieve the test data from a .csv file */
    FileDataSource<CSVFeatureManager> modelSource(trainedModelFileName,

    /* Create Numeric Table for beta coefficients */
    NumericTablePtr beta(new HomogenNumericTable<>(nFeatures+1, 0, NumericTable::doNotAllocate));
    /* Get beta from trained model */

    /* Retrive pointer to the begining of beta */
    BlockDescriptor<> blockResult;
    beta->getBlockOfRows(0, beta->getNumberOfRows(), readOnly, blockResult);
    /* Define the size of beta */
    size_t numberOfBetas = (beta->getNumberOfRows())*(beta->getNumberOfColumns());

    /* Initialize iterators for beta array with itrecepts */
    float* first = blockResult.getBlockPtr();
    float* last = first + numberOfBetas;

    /* Create model builder with true intercept flag */
    ModelBuilder<> modelBuilder(nFeatures, nDependentVariables);

    /* Set beta */
    modelBuilder.setBeta(first, last);

    printNumericTable(modelBuilder.getModel()->getBeta(), "Linear Regression coefficients of built model:");

    return modelBuilder.getModel();

void testModel(ModelPtr& inputModel)
    /* Initialize FileDataSource<CSVFeatureManager> to retrieve the test data from a .csv file */
    FileDataSource<CSVFeatureManager> testDataSource(testDatasetFileName,

    /* Create Numeric Tables for testing data and ground truth values */
    NumericTablePtr testData(new HomogenNumericTable<>(nFeatures, 0, NumericTable::doNotAllocate));
    NumericTablePtr testGroundTruth(new HomogenNumericTable<>(nDependentVariables, 0, NumericTable::doNotAllocate));
    NumericTablePtr mergedData(new MergedNumericTable(testData, testGroundTruth));

    /* Load the data from the data file */

    /* Create an algorithm object to predict values of multiple linear regression */
    prediction::Batch<> algorithm;

    /* Pass a testing data set and the trained model to the algorithm */
    algorithm.input.set(prediction::data, testData);
    algorithm.input.set(prediction::model, inputModel);

    /* Predict values of multiple linear regression */

    /* Retrieve the algorithm results */
    NumericTablePtr prediction = algorithm.getResult()->get(prediction::prediction);
    printNumericTable(prediction, "Linear Regression prediction results: (first 10 rows):", 10);
    printNumericTable(testGroundTruth, "Ground truth (first 10 rows):", 10);
Optimization Notice: 
For more complete information about compiler optimizations, see our Optimization Notice.
Select sticky button color: 
Orange (only for download buttons)