Deprecation Notice: With the introduction of daal4py, a package that supersedes PyDAAL, Intel is deprecating PyDAAL and will discontinue support starting with Intel® DAAL 2021 and Intel® Distribution for Python 2021. Until then Intel will continue to provide compatible pyDAAL pip and conda packages for newer releases of Intel DAAL and make it available in open source. However, Intel will not add the new features of Intel DAAL to pyDAAL. Intel recommends developers switch to and use daal4py.

Note: To find daal4py examples, refer to daal4py documentation or browse github repository.

 # file: locallycon2d_layer_dense_batch.py
 # Copyright 2014-2019 Intel Corporation.
 # This software and the related documents are Intel copyrighted  materials,  and
 # your use of  them is  governed by the  express license  under which  they were
 # provided to you (License).  Unless the License provides otherwise, you may not
 # use, modify, copy, publish, distribute,  disclose or transmit this software or
 # the related documents without Intel's prior written permission.
 # This software and the related documents  are provided as  is,  with no express
 # or implied  warranties,  other  than those  that are  expressly stated  in the
 # License.
 # !  Content:
 # !    Python example of forward and backward 2D locally connected layer usage
 # !
 # !*****************************************************************************
 ## \example locallycon2d_layer_dense_batch.py
 import os
 import sys
 from daal.algorithms.neural_networks import layers
 from daal.data_management import HomogenTensor, TensorIface
 utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
 if utils_folder not in sys.path:
     sys.path.insert(0, utils_folder)
 from utils import printTensor
 # Input data set name
 datasetFileName = os.path.join("..", "data", "batch", "layer.csv")
 if __name__ == "__main__":
     # Create collection of dimension sizes of the input data tensor
     inDims = [2, 2, 6, 8]
     tensorData = HomogenTensor(inDims, TensorIface.doAllocate, 1.0)
     # Create an algorithm to compute forward 2D locally connected layer results using default method
     locallyconnected2dLayerForward = layers.locallyconnected2d.forward.Batch()
     locallyconnected2dLayerForward.input.setInput(layers.forward.data, tensorData)
     # Compute forward 2D locally connected layer results
     forwardResult = locallyconnected2dLayerForward.compute()
     printTensor(forwardResult.getResult(layers.forward.value), "Forward 2D locally connected layer result (first 5 rows):", 5, 15)
     printTensor(forwardResult.getLayerData(layers.locallyconnected2d.auxWeights), "2D locally connected layer weights (first 5 rows):", 5, 15)
     gDims = forwardResult.getResult(layers.forward.value).getDimensions()
     # Create input gradient tensor for backward 2D locally connected layer
     tensorDataBack = HomogenTensor(gDims, TensorIface.doAllocate, 0.01)
     # Create an algorithm to compute backward 2D locally connected layer results using default method
     locallyconnected2dLayerBackward = layers.locallyconnected2d.backward.Batch()
     locallyconnected2dLayerBackward.input.setInput(layers.backward.inputGradient, tensorDataBack)
     locallyconnected2dLayerBackward.input.setInputLayerData(layers.backward.inputFromForward, forwardResult.getResultLayerData(layers.forward.resultForBackward))
     # Compute backward 2D locally connected layer results
     backwardResult = locallyconnected2dLayerBackward.compute()
                 "2D locally connected layer backpropagation gradient result (first 5 rows):", 5, 15)
                 "2D locally connected layer backpropagation weightDerivative result (first 5 rows):", 5, 15)
                 "2D locally connected layer backpropagation biasDerivative result (first 5 rows):", 5, 15)
For more complete information about compiler optimizations, see our Optimization Notice.
Select sticky button color: 
Orange (only for download buttons)