low_order_moms_csr_batch.py

Deprecation Notice: With the introduction of daal4py, a package that supersedes PyDAAL, Intel is deprecating PyDAAL and will discontinue support starting with Intel® DAAL 2021 and Intel® Distribution for Python 2021. Until then Intel will continue to provide compatible pyDAAL pip and conda packages for newer releases of Intel DAAL and make it available in open source. However, Intel will not add the new features of Intel DAAL to pyDAAL. Intel recommends developers switch to and use daal4py.

Note: To find daal4py examples, refer to daal4py documentation or browse github repository.

 # file: low_order_moms_csr_batch.py
 #===============================================================================
 # Copyright 2014-2019 Intel Corporation.
 #
 # This software and the related documents are Intel copyrighted  materials,  and
 # your use of  them is  governed by the  express license  under which  they were
 # provided to you (License).  Unless the License provides otherwise, you may not
 # use, modify, copy, publish, distribute,  disclose or transmit this software or
 # the related documents without Intel's prior written permission.
 #
 # This software and the related documents  are provided as  is,  with no express
 # or implied  warranties,  other  than those  that are  expressly stated  in the
 # License.
 #===============================================================================
 
 ## <a name="DAAL-EXAMPLE-PY-LOW_ORDER_MOMENTS_CSR_BATCH"></a>
 ## \example low_order_moms_csr_batch.py
 
 import os
 import sys
 
 from daal.algorithms import low_order_moments
 
 utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
 if utils_folder not in sys.path:
     sys.path.insert(0, utils_folder)
 from utils import printNumericTable, createSparseTable
 
 DAAL_PREFIX = os.path.join('..', 'data')
 
 # Input data set parameters
 # Input matrix is stored in one-based sparse row storage format
 datasetFileName = os.path.join(DAAL_PREFIX, 'batch', 'covcormoments_csr.csv')
 
 
 def printResults(res):
 
     printNumericTable(res.get(low_order_moments.minimum),              "Minimum:")
     printNumericTable(res.get(low_order_moments.maximum),              "Maximum:")
     printNumericTable(res.get(low_order_moments.sum),                  "Sum:")
     printNumericTable(res.get(low_order_moments.sumSquares),           "Sum of squares:")
     printNumericTable(res.get(low_order_moments.sumSquaresCentered),   "Sum of squared difference from the means:")
     printNumericTable(res.get(low_order_moments.mean),                 "Mean:")
     printNumericTable(res.get(low_order_moments.secondOrderRawMoment), "Second order raw moment:")
     printNumericTable(res.get(low_order_moments.variance),             "Variance:")
     printNumericTable(res.get(low_order_moments.standardDeviation),    "Standard deviation:")
     printNumericTable(res.get(low_order_moments.variation),            "Variation:")
 
 if __name__ == "__main__":
 
     # Read datasetFileName from file and create numeric tables for storing input data
     dataTable = createSparseTable(datasetFileName)
 
     # Create algorithm objects for low order moments computing in distributed mode using default method
     algorithm = low_order_moments.Batch()
 
     # Set input arguments of the algorithm
     algorithm.input.set(low_order_moments.data, dataTable)
 
     # Get computed low order moments
     res = algorithm.compute()
 
     printResults(res)
For more complete information about compiler optimizations, see our Optimization Notice.
Select sticky button color: 
Orange (only for download buttons)