mn_naive_bayes_dense_distr.cpp

/* file: mn_naive_bayes_dense_distr.cpp */
/*******************************************************************************
* Copyright 2014-2019 Intel Corporation.
*
* This software and the related documents are Intel copyrighted  materials,  and
* your use of  them is  governed by the  express license  under which  they were
* provided to you (License).  Unless the License provides otherwise, you may not
* use, modify, copy, publish, distribute,  disclose or transmit this software or
* the related documents without Intel's prior written permission.
*
* This software and the related documents  are provided as  is,  with no express
* or implied  warranties,  other  than those  that are  expressly stated  in the
* License.
*******************************************************************************/

/*
!  Content:
!    C++ example of Naive Bayes classification in the distributed processing
!    mode.
!
!    The program trains the Naive Bayes model on a supplied training data set in
!    dense format and then performs classification of previously unseen data.
!******************************************************************************/

#include "daal.h"
#include "service.h"

using namespace std;
using namespace daal;
using namespace daal::algorithms;
using namespace daal::algorithms::multinomial_naive_bayes;

/* Input data set parameters */
const string trainDatasetFileNames[4]     =
{
    "../data/distributed/naivebayes_train_dense_1.csv", "../data/distributed/naivebayes_train_dense_2.csv",
    "../data/distributed/naivebayes_train_dense_3.csv", "../data/distributed/naivebayes_train_dense_4.csv"
};

string testDatasetFileName      = "../data/distributed/naivebayes_test_dense.csv";

const size_t nFeatures            = 20;
const size_t nClasses             = 20;
const size_t nBlocks              = 4;

void trainModel();
void testModel();
void printResults();

training::ResultPtr trainingResult;
classifier::prediction::ResultPtr predictionResult;
NumericTablePtr testGroundTruth;

int main(int argc, char *argv[])
{
    checkArguments(argc, argv, 5,
                   &trainDatasetFileNames[0], &trainDatasetFileNames[1],
                   &trainDatasetFileNames[2], &trainDatasetFileNames[3],
                   &testDatasetFileName);

    trainModel();
    testModel();

    printResults();

    return 0;
}

void trainModel()
{
    training::Distributed<step2Master> masterAlgorithm(nClasses);

    for(size_t i = 0; i < nBlocks; i++)
    {
        /* Initialize FileDataSource<CSVFeatureManager> to retrieve the input data from a .csv file */
        FileDataSource<CSVFeatureManager> trainDataSource(trainDatasetFileNames[i],
                                                          DataSource::notAllocateNumericTable,
                                                          DataSource::doDictionaryFromContext);

        /* Create Numeric Tables for training data and labels */
        NumericTablePtr trainData(new HomogenNumericTable<>(nFeatures, 0, NumericTable::doNotAllocate));
        NumericTablePtr trainGroundTruth(new HomogenNumericTable<>(1, 0, NumericTable::doNotAllocate));
        NumericTablePtr mergedData(new MergedNumericTable(trainData, trainGroundTruth));

        /* Retrieve the data from the input file */
        trainDataSource.loadDataBlock(mergedData.get());

        /* Create an algorithm object to train the Naive Bayes model on the local-node data */
        training::Distributed<step1Local> localAlgorithm(nClasses);

        /* Pass a training data set and dependent values to the algorithm */
        localAlgorithm.input.set(classifier::training::data,   trainData);
        localAlgorithm.input.set(classifier::training::labels, trainGroundTruth);

        /* Build the Naive Bayes model on the local node */
        localAlgorithm.compute();

        /* Set the local Naive Bayes model as input for the master-node algorithm */
        masterAlgorithm.input.add(training::partialModels, localAlgorithm.getPartialResult());
    }

    /* Merge and finalize the Naive Bayes model on the master node */
    masterAlgorithm.compute();
    masterAlgorithm.finalizeCompute();

    /* Retrieve the algorithm results */
    trainingResult = masterAlgorithm.getResult();
}

void testModel()
{
    /* Initialize FileDataSource<CSVFeatureManager> to retrieve the test data from a .csv file */
    FileDataSource<CSVFeatureManager> testDataSource(testDatasetFileName,
                                                     DataSource::notAllocateNumericTable,
                                                     DataSource::doDictionaryFromContext);

    /* Create Numeric Tables for testing data and labels */
    NumericTablePtr testData(new HomogenNumericTable<>(nFeatures, 0, NumericTable::doNotAllocate));
    testGroundTruth = NumericTablePtr(new HomogenNumericTable<>(1, 0, NumericTable::doNotAllocate));
    NumericTablePtr mergedData(new MergedNumericTable(testData, testGroundTruth));

    /* Retrieve the data from input file */
    testDataSource.loadDataBlock(mergedData.get());

    /* Create an algorithm object to predict Naive Bayes values */
    prediction::Batch<> algorithm(nClasses);

    /* Pass a testing data set and the trained model to the algorithm */
    algorithm.input.set(classifier::prediction::data,  NumericTablePtr(testData));
    algorithm.input.set(classifier::prediction::model, trainingResult->get(classifier::training::model));

    /* Predict Naive Bayes values */
    algorithm.compute();

    /* Retrieve the algorithm results */
    predictionResult = algorithm.getResult();
}

void printResults()
{
    printNumericTables<int, int>(testGroundTruth,
                                 predictionResult->get(classifier::prediction::prediction),
                                 "Ground truth", "Classification results",
                                 "NaiveBayes classification results (first 20 observations):", 20);
}
For more complete information about compiler optimizations, see our Optimization Notice.
Select sticky button color: 
Orange (only for download buttons)