Deprecation Notice: With the introduction of daal4py, a package that supersedes PyDAAL, Intel is deprecating PyDAAL and will discontinue support starting with Intel® DAAL 2021 and Intel® Distribution for Python 2021. Until then Intel will continue to provide compatible pyDAAL pip and conda packages for newer releases of Intel DAAL and make it available in open source. However, Intel will not add the new features of Intel DAAL to pyDAAL. Intel recommends developers switch to and use daal4py.

Note: To find daal4py examples, refer to daal4py documentation or browse github repository.

 # file:
 # Copyright 2014-2019 Intel Corporation.
 # This software and the related documents are Intel copyrighted  materials,  and
 # your use of  them is  governed by the  express license  under which  they were
 # provided to you (License).  Unless the License provides otherwise, you may not
 # use, modify, copy, publish, distribute,  disclose or transmit this software or
 # the related documents without Intel's prior written permission.
 # This software and the related documents  are provided as  is,  with no express
 # or implied  warranties,  other  than those  that are  expressly stated  in the
 # License.
 ## \example
 import os
 import sys
 import numpy as np
 from daal.data_management import HomogenNumericTable, FileDataSource, DataSource, InputDataArchive, OutputDataArchive
 utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
 if utils_folder not in sys.path:
     sys.path.insert(0, utils_folder)
 from utils import printNumericTable
 #  Input data set parameters
 datasetFileName = os.path.join('..', 'data', 'batch', 'serialization.csv')
 def serializeNumericTable(dataTable):
     #  Create a data archive to serialize the numeric table
     dataArch = InputDataArchive()
     #  Serialize the numeric table into the data archive
     #  Get the length of the serialized data in bytes
     length = dataArch.getSizeOfArchive()
     #  Store the serialized data in an array
     buffer = np.zeros(length, dtype=np.ubyte)
     return buffer
 def deserializeNumericTable(buffer):
     #  Create a data archive to deserialize the numeric table
     dataArch = OutputDataArchive(buffer)
     #  Create a numeric table object
     dataTable = HomogenNumericTable()
     #  Deserialize the numeric table from the data archive
     return dataTable
 if __name__ == "__main__":
     #  Initialize FileDataSource_CSVFeatureManager to retrieve the input data from a .csv file
     dataSource = FileDataSource(
         datasetFileName, DataSource.doAllocateNumericTable, DataSource.doDictionaryFromContext
     #  Retrieve the data from the input file
     #  Retrieve a numeric table
     dataTable = dataSource.getNumericTable()
     #  Print the original data
     printNumericTable(dataTable, "Data before serialization:")
     #  Serialize the numeric table into the memory buffer
     buffer = serializeNumericTable(dataTable)
     #  Deserialize the numeric table from the memory buffer
     restoredDataTable = deserializeNumericTable(buffer)
     #  Print the restored data
     printNumericTable(restoredDataTable, "Data after deserialization:")
For more complete information about compiler optimizations, see our Optimization Notice.
Select sticky button color: 
Orange (only for download buttons)