svd_dense_distr.py

Deprecation Notice: With the introduction of daal4py, a package that supersedes PyDAAL, Intel is deprecating PyDAAL and will discontinue support starting with Intel® DAAL 2021 and Intel® Distribution for Python 2021. Until then Intel will continue to provide compatible pyDAAL pip and conda packages for newer releases of Intel DAAL and make it available in open source. However, Intel will not add the new features of Intel DAAL to pyDAAL. Intel recommends developers switch to and use daal4py.

Note: To find daal4py examples, refer to daal4py documentation or browse github repository.

 # file: svd_dense_distr.py
 #===============================================================================
 # Copyright 2014-2019 Intel Corporation.
 #
 # This software and the related documents are Intel copyrighted  materials,  and
 # your use of  them is  governed by the  express license  under which  they were
 # provided to you (License).  Unless the License provides otherwise, you may not
 # use, modify, copy, publish, distribute,  disclose or transmit this software or
 # the related documents without Intel's prior written permission.
 #
 # This software and the related documents  are provided as  is,  with no express
 # or implied  warranties,  other  than those  that are  expressly stated  in the
 # License.
 #===============================================================================
 
 ## <a name="DAAL-EXAMPLE-PY-SVD_DISTRIBUTED"></a>
 ## \example svd_dense_distr.py
 
 import os
 import sys
 import numpy as np
 
 from daal import step1Local, step2Master, step3Local
 from daal.algorithms import svd
 from daal.data_management import FileDataSource, DataSourceIface
 
 utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
 if utils_folder not in sys.path:
     sys.path.insert(0, utils_folder)
 from utils import printNumericTable
 
 DAAL_PREFIX = os.path.join('..', 'data')
 
 # Input data set parameters
 nBlocks = 4
 
 datasetFileNames = [
     os.path.join(DAAL_PREFIX, 'distributed', 'svd_1.csv'),
     os.path.join(DAAL_PREFIX, 'distributed', 'svd_2.csv'),
     os.path.join(DAAL_PREFIX, 'distributed', 'svd_3.csv'),
     os.path.join(DAAL_PREFIX, 'distributed', 'svd_4.csv')
 ]
 
 dataFromStep1ForStep2 = [0] * nBlocks
 dataFromStep1ForStep3 = [0] * nBlocks
 dataFromStep2ForStep3 = [0] * nBlocks
 Sigma = None
 V = None
 Ui = [0] * nBlocks
 
 
 def computestep1Local(block):
     global dataFromStep1ForStep2, dataFromStep1ForStep3
 
     # Initialize FileDataSource<CSVFeatureManager> to retrieve the input data from a .csv file
     dataSource = FileDataSource(
         datasetFileNames[block],
         DataSourceIface.doAllocateNumericTable,
         DataSourceIface.doDictionaryFromContext
     )
 
     # Retrieve the input data
     dataSource.loadDataBlock()
 
     # Create an algorithm to compute SVD on the local node
     algorithm = svd.Distributed(step1Local,fptype=np.float64)
 
     algorithm.input.set(svd.data, dataSource.getNumericTable())
 
     # Compute SVD and get OnlinePartialResult class from daal.algorithms.svd
     pres = algorithm.compute()
 
     dataFromStep1ForStep2[block] = pres.get(svd.outputOfStep1ForStep2)
     dataFromStep1ForStep3[block] = pres.get(svd.outputOfStep1ForStep3)
 
 
 def computeOnMasterNode():
     global Sigma, V, dataFromStep2ForStep3
 
     # Create an algorithm to compute SVD on the master node
     algorithm = svd.Distributed(step2Master,fptype=np.float64)
 
     for i in range(nBlocks):
         algorithm.input.add(svd.inputOfStep2FromStep1, i, dataFromStep1ForStep2[i])
 
     # Compute SVD and get DistributedPartialResult class from daal.algorithms.svd
     pres = algorithm.compute()
 
     for i in range(nBlocks):
         dataFromStep2ForStep3[i] = pres.getCollection(svd.outputOfStep2ForStep3, i)
 
     res = algorithm.finalizeCompute()
 
     Sigma = res.get(svd.singularValues)
     V = res.get(svd.rightSingularMatrix)
 
 
 def finalizeComputestep1Local(block):
     global Ui
 
     # Create an algorithm to compute SVD on the master node
     algorithm = svd.Distributed(step3Local,fptype=np.float64)
 
     algorithm.input.set(svd.inputOfStep3FromStep1, dataFromStep1ForStep3[block])
     algorithm.input.set(svd.inputOfStep3FromStep2, dataFromStep2ForStep3[block])
 
     # Compute SVD
     algorithm.compute()
     res = algorithm.finalizeCompute()
 
     Ui[block] = res.get(svd.leftSingularMatrix)
 
 if __name__ == "__main__":
 
     for i in range(nBlocks):
         computestep1Local(i)
 
     computeOnMasterNode()
 
     for i in range(nBlocks):
         finalizeComputestep1Local(i)
 
     # Print the results
     printNumericTable(Sigma, "Singular values:")
     printNumericTable(V,     "Right orthogonal matrix V:")
     printNumericTable(Ui[0], "Part of left orthogonal matrix U from 1st node:", 10)
For more complete information about compiler optimizations, see our Optimization Notice.
Select sticky button color: 
Orange (only for download buttons)