SINet (a light weight portrait segmentation) get wrong result on Openvino inference

SINet (a light weight portrait segmentation) get wrong result on Openvino inference


I try the new model SINet (paper:https://arxiv.org/abs/1911.09099 github:https://github.com/clovaai/ext_portrait_segmentation) and retrain with a little modification on network structure to fit onnx transformation: change bilinear upsample to nearest neighbour, so as i can use opset_version=10 and fit the requirement of onnx model_optimizor of Openvino 2020.2.
The result are same between onnx(run by onnxRuntime) and pytorch. There are no Error or Warning in the process of transfer onnx model to IR. The benchmark app is also run fine.
However, I get the different result from Infer Engine by ExecutableNetwork.infer() and also from cv2.dnn (opencv4.2.0-openvino). Code will be shown below.

System: Ubuntu 18.04

python: 3.6.9

Openvino: 2020.2

opencv: 4.2.0-openvino

pytorch: 1.4.0+cu100

Network: SINet(with DWConv, PReLU, view, transpose, nearest neighbour upsample, BN, AvgPool2d, Linear, add, max,...).

.onnx model and IR download link

rul: https://pan.baidu.com/s/1ySK08ORMHm7AhN3NLG8XDA
psw: jjox

or download the attach file.

i convert onnx model by mo_onnx.py following instructure. I have also try to close all fusion and optimize of op in om by arg or force generate old version IR(7), but still get a wrong result.

the code for converting pytorch model to onnx and test pytorch infer, onnx infer and Openvino infer is given below.

import torch
import onnx
from argparse import ArgumentParser
import json
import os
import models
import numpy as np
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

if __name__ == '__main__':
    parser = ArgumentParser()
    parser.add_argument('-c', '--config', type=str, default='./setting/SINet_Infer.json',
                        help='JSON file for configuration')
    parser.add_argument('--cuda', action='store_true',
                        help='use gpu or not')
    args = parser.parse_args()

    with open(args.config) as fin:
        config = json.load(fin)

    test_config = config['test_config']
    data_config = config['data_config']
    Lovasz = test_config["loss"] == "Lovasz"
    num_classes = test_config["num_classes"] -1 if Lovasz else test_config["num_classes"]
    p = test_config["p"]
    q = test_config["q"]
    upsample = test_config['Upsample']
    model_name = test_config['Model']
    chnn = test_config["chnn"]
    ckpt = test_config['weight_name']
    result_dir = test_config['result_dir']
    input_dir = data_config['img_dir']
    input_ext = data_config['img_ext']

    if not os.path.exists(result_dir):
        os.mkdir(result_dir)

    model = models.__dict__[model_name](classes=num_classes, p=p, q=q, chnn=chnn,upsample=upsample)

    if torch.cuda.device_count() > 0 and args.cuda:
        model=model.cuda()
    if torch.cuda.is_available() and args.cuda:
        model.load_state_dict(torch.load(ckpt))
    else:
        model.load_state_dict(torch.load(ckpt,"cpu"))
    model.eval()

    dummy_input = (np.random.randn(1,3,480, 640)/128).astype(np.float32)
    torch_input = torch.from_numpy(dummy_input)

    if torch.cuda.device_count() > 0 and args.cuda:
        torch_input=torch_input.cuda()

    # torch.onnx.export(model,
    #                   torch_input,
    #                   "{}.onnx".format(model_name),
    #                   export_params=True,
    #                   do_constant_folding=True,
    #                   keep_initializers_as_inputs=True,
    #                   verbose = True,
    #                   opset_version=10)
    # opset_version=10 only support upsample nearest
    # upsample bilinear with align_corners=False will curse wrong result when opset_version=10
    # upsample bilinear with align_corners=Ture supported only when opset_version=11

    import onnx
    from onnx import optimizer
    import onnxruntime as ort
    from time import time


    ori_model = onnx.load("./Dnc_SINet.onnx")
    opt_model = optimizer.optimize(ori_model)
    onnx.save(opt_model,"./Dnc_SINet.onnx")
    ort_sess = ort.InferenceSession("./Dnc_SINet.onnx")

    torch_out = model(torch_input)
    onnx_out = ort_sess.run(None, {'input.1': torch_input.numpy()})

    print(torch_out)
    print(onnx_out)

    from openvino.inference_engine import IECore
    import sys

    model_xml = "/opt/intel/openvino_2020.2.120/deployment_tools/model_optimizer/Dnc_SINet.xml"
    model_bin = "/opt/intel/openvino_2020.2.120/deployment_tools/model_optimizer/Dnc_SINet.bin"
    ie = IECore()
    net = ie.read_network(model_xml,model_bin)
    exec_net = ie.load_network(network=net, device_name='CPU')


    input_layer_name = next(iter(net.inputs))
    output_layer_name = next(iter(net.outputs))

    print(list(net.inputs.keys()))
    print(list(net.outputs.keys()))

    output = exec_net.infer(inputs={input_layer_name: dummy_input})
    print(output)


I suppose there are some structures or op of onnx have not been supported by newest openvino.

Is someone know the reason? Thanks

P.S:

output from om_onnx.py

Model Optimizer arguments:
Common parameters:
    - Path to the Input Model:     /home/qqai-cv/yexing/workspace/ext_portrait_segmentation/Dnc_SINet.onnx
    - Path for generated IR:     /opt/intel/openvino_2020.2.120/deployment_tools/model_optimizer/.
    - IR output name:     Dnc_SINet
    - Log level:     ERROR
    - Batch:     Not specified, inherited from the model
    - Input layers:     Not specified, inherited from the model
    - Output layers:     Not specified, inherited from the model
    - Input shapes:     [1,3,480,640]
    - Mean values:     Not specified
    - Scale values:     Not specified
    - Scale factor:     Not specified
    - Precision of IR:     FP32
    - Enable fusing:     True
    - Enable grouped convolutions fusing:     True
    - Move mean values to preprocess section:     False
    - Reverse input channels:     False
ONNX specific parameters:
Model Optimizer version:     2020.2.0-60-g0bc66e26ff

[ SUCCESS ] Generated IR version 10 model.
[ SUCCESS ] XML file: /opt/intel/openvino_2020.2.120/deployment_tools/model_optimizer/./Dnc_SINet.xml
[ SUCCESS ] BIN file: /opt/intel/openvino_2020.2.120/deployment_tools/model_optimizer/./Dnc_SINet.bin
[ SUCCESS ] Total execution time: 11.45 seconds.
[ SUCCESS ] Memory consumed: 93 MB.

output of the former code:

Dnc_SINet
SB Net Enc bracnch num :  2
SB Net Enc chnn num:  1
SINet Enc bracnch num :  2
SINet Enc chnn num:  1
This module has [[3, 1], [5, 1]]
This module has [[3, 1], [3, 1]]
This module has [[3, 1], [5, 1]]
This module has [[3, 1], [3, 1]]
This module has [[5, 1], [3, 2]]
This module has [[5, 2], [3, 4]]
This module has [[3, 1], [3, 1]]
This module has [[5, 1], [5, 1]]
This module has [[3, 2], [3, 4]]
This module has [[3, 1], [5, 2]]
tensor([[[[ 0.3819,  0.5347,  0.5347,  ...,  0.4762,  0.4762,  0.3106],
          [ 0.7500,  1.0357,  1.0357,  ...,  0.8123,  0.8123,  0.5036],
          [ 0.7500,  1.0357,  1.0357,  ...,  0.8123,  0.8123,  0.5036],
          ...,
          [ 0.4873,  0.5107,  0.5107,  ..., -0.5339, -0.5339, -0.4042],
          [ 0.4873,  0.5107,  0.5107,  ..., -0.5339, -0.5339, -0.4042],
          [ 0.3734,  0.4535,  0.4535,  ..., -0.3036, -0.3036, -0.2189]],

         [[-0.3828, -0.5603, -0.5603,  ..., -0.4949, -0.4949, -0.3234],
          [-0.7407, -1.0680, -1.0680,  ..., -0.8161, -0.8161, -0.5189],
          [-0.7407, -1.0680, -1.0680,  ..., -0.8161, -0.8161, -0.5189],
          ...,
          [-0.4727, -0.5542, -0.5542,  ...,  0.5203,  0.5203,  0.3691],
          [-0.4727, -0.5542, -0.5542,  ...,  0.5203,  0.5203,  0.3691],
          [-0.3962, -0.5192, -0.5192,  ...,  0.2657,  0.2657,  0.1787]]]],
       grad_fn=<MkldnnConvolutionBackward>)
[array([[[[ 0.3818878 ,  0.5346629 ,  0.5346629 , ...,  0.47616172,
           0.47616172,  0.31056982],
         [ 0.750038  ,  1.0357037 ,  1.0357037 , ...,  0.8122927 ,
           0.8122927 ,  0.5036248 ],
         [ 0.750038  ,  1.0357037 ,  1.0357037 , ...,  0.8122927 ,
           0.8122927 ,  0.5036248 ],
         ...,
         [ 0.48733354,  0.5107298 ,  0.5107298 , ..., -0.5339395 ,
          -0.5339395 , -0.4042134 ],
         [ 0.48733354,  0.5107298 ,  0.5107298 , ..., -0.5339395 ,
          -0.5339395 , -0.4042134 ],
         [ 0.3734363 ,  0.45352763,  0.45352763, ..., -0.30358696,
          -0.30358696, -0.21885665]],

        [[-0.38280687, -0.5603347 , -0.5603347 , ..., -0.4948506 ,
          -0.4948506 , -0.32344514],
         [-0.7407261 , -1.0680082 , -1.0680082 , ..., -0.8160989 ,
          -0.8160989 , -0.51887286],
         [-0.7407261 , -1.0680082 , -1.0680082 , ..., -0.8160989 ,
          -0.8160989 , -0.51887286],
         ...,
         [-0.47271097, -0.5542413 , -0.5542413 , ...,  0.5202785 ,
           0.5202785 ,  0.369121  ],
         [-0.47271097, -0.5542413 , -0.5542413 , ...,  0.5202785 ,
           0.5202785 ,  0.369121  ],
         [-0.39621764, -0.51916736, -0.51916736, ...,  0.26572707,
           0.26572707,  0.17874075]]]], dtype=float32)]
['input.1']
['962']
{'962': array([[[[ 0.32619184,  0.39257142,  0.39257142, ...,  0.45147315,
           0.45147315,  0.3005295 ],
         [ 0.6733598 ,  0.8392231 ,  0.8392231 , ...,  0.7603874 ,
           0.7603874 ,  0.48128414],
         [ 0.6733598 ,  0.8392231 ,  0.8392231 , ...,  0.7603874 ,
           0.7603874 ,  0.48128414],
         ...,
         [ 0.9983263 ,  1.3471146 ,  1.3471146 , ...,  0.60972846,
           0.60972846,  0.41599974],
         [ 0.9983263 ,  1.3471146 ,  1.3471146 , ...,  0.60972846,
           0.60972846,  0.41599974],
         [ 0.7210743 ,  1.0018882 ,  1.0018882 , ...,  0.37571615,
           0.37571615,  0.24157274]],

        [[-0.31721306, -0.41440713, -0.41440713, ..., -0.4688219 ,
          -0.4688219 , -0.3080279 ],
         [-0.6602123 , -0.88080376, -0.88080376, ..., -0.7617766 ,
          -0.7617766 , -0.48949003],
         [-0.6602123 , -0.88080376, -0.88080376, ..., -0.7617766 ,
          -0.7617766 , -0.48949003],
         ...,
         [-0.9842702 , -1.3944788 , -1.3944788 , ..., -0.6041991 ,
          -0.6041991 , -0.40403605],
         [-0.9842702 , -1.3944788 , -1.3944788 , ..., -0.6041991 ,
          -0.6041991 , -0.40403605],
         [-0.7329229 , -1.0536808 , -1.0536808 , ..., -0.3506116 ,
          -0.3506116 , -0.22082609]]]], dtype=float32)}

 

 

 

 

 

 

 

 

 

AttachmentSize
Downloadapplication/zip Dnc_SINet.zip685.8 KB
2 posts / 0 new

Hi Kevin,

SINet is not a tried and tested OpenVINO python to ONNX conversion topology. Please refer to Supported Pytorch* Models via ONNX Conversion.

Best Regards,

Surya

Leave a Comment

Please sign in to add a comment. Not a member? Join today