I tried mkl_dcscmm to compute both A*B and A'*B using a Matlab mex file (64-bit Linux, Matlab 2013a and 2013b) similar to the code posted in

http://software.intel.com/en-us/forums/topic/472320

MKL is faster than matlab's own implemention on A*B. It is strange that MKL is slower than matlab's version on A'*B and the results are slightly different.

(the first column of cpu is from matlab's implementation and the second column is from MKL)

seed: 76080079, A*B: err 0.00e+00, cpu (0.91, 0.44), A'*B: err 1.43e-09, cpu (0.76, 0.71)

seed: 66432737, A*B: err 0.00e+00, cpu (0.91, 0.43), A'*B: err 1.43e-09, cpu (0.75, 0.79)

seed: 90643494, A*B: err 0.00e+00, cpu (0.92, 0.45), A'*B: err 1.43e-09, cpu (0.77, 0.88)

seed: 75317986, A*B: err 0.00e+00, cpu (0.94, 0.46), A'*B: err 1.45e-09, cpu (0.75, 0.82)

seed: 31023079, A*B: err 0.00e+00, cpu (0.92, 0.42), A'*B: err 1.43e-09, cpu (0.75, 0.80)

seed: 86467634, A*B: err 0.00e+00, cpu (0.94, 0.48), A'*B: err 1.44e-09, cpu (0.76, 0.86)

seed: 19834911, A*B: err 0.00e+00, cpu (0.93, 0.61), A'*B: err 1.42e-09, cpu (0.78, 0.76)

seed: 79273667, A*B: err 0.00e+00, cpu (0.93, 0.48), A'*B: err 1.43e-09, cpu (0.75, 0.82)

seed: 11976366, A*B: err 0.00e+00, cpu (0.93, 0.45), A'*B: err 1.42e-09, cpu (0.78, 0.89)

seed: 16420430, A*B: err 0.00e+00, cpu (0.92, 0.40), A'*B: err 1.43e-09, cpu (0.75, 0.80)

My codes are attached. It can be compiled as

mex -O -largeArrayDims -output sfmult mkl-sfmult-v1.cpp

A*B and A'*B can be computed as sfmult(A, B, 1) and sfmult(A, B, 2), respectively.

Although A'*B can also be computed as sfmult(A', B, 1) by first doing the transpose, it is better to provide the A matrix and use the flag of transpose inside mkl_dcscmm.

Any suggestion or comment is welcome. Thanks!