Article

Caffe* Training on Multi-node Distributed-memory Systems Based on Intel® Xeon® Processor E5 Family

Caffe is a deep learning framework developed by the Berkeley Vision and Learning Center (BVLC) and one of the most popular community frameworks for image recognition. Caffe is often used as a benchmark together with AlexNet*, a neural network topology for image recognition, and ImageNet*, a database of labeled images.
Authored by Gennady F. (Blackbelt) Last updated on 07/05/2019 - 14:54
Article

基于英特尔® 至强™ 处理器 E5 产品家族的多节点分布式内存系统上的 Caffe* 培训

Caffe is a deep learning framework developed by the Berkeley Vision and Learning Center (BVLC) and one of the most popular community frameworks for image recognition. Caffe is often used as a benchmark together with AlexNet*, a neural network topology for image recognition, and ImageNet*, a database of labeled images.
Authored by Gennady F. (Blackbelt) Last updated on 07/05/2019 - 14:55
Article

Scale-Up Implementation of a Transportation Network Using Ant Colony Optimization (ACO)

In this article an OpenMP* based implementation of the Ant Colony Optimization algorithm was analyzed for bottlenecks with Intel® VTune™ Amplifier XE 2016 together with improvements using hybrid MPI-OpenMP and Intel® Threading Building Blocks were introduced to achieve efficient scaling across a four-socket Intel® Xeon® processor E7-8890 v4 processor-based system.
Authored by Sunny G. (Intel) Last updated on 07/05/2019 - 19:10
Article

Caffe* Optimized for Intel® Architecture: Applying Modern Code Techniques

This paper demonstrates a special version of Caffe* — a deep learning framework originally developed by the Berkeley Vision and Learning Center (BVLC) — that is optimized for Intel® architecture.
Authored by Last updated on 07/06/2019 - 16:40
Blog post

Track Reconstruction with Deep Learning at the CERN CMS Experiment

Connecting the Dots
Authored by Last updated on 12/12/2018 - 18:00
Article

Code Sample: Optimizing Binarized Neural Networks on Intel® Xeon® Scalable Processors

In the previous article, we discussed the performance and accuracy of Binarized Neural Networks (BNN). We also introduced a BNN coded from scratch in the Wolfram Language. The key component of this neural network is Matrix Multiplication.
Authored by Yash Akhauri Last updated on 03/21/2019 - 12:40