腾讯* 在基于英特尔® 至强® 处理器的游戏内购买推荐系统中使用机器学习

To enhance the online gaming user experience, Tencent uses an in-game purchase recommendation system employing the machine learning method to help users decide what equipment they would want to buy within their games. Tencent machine learning engine uses DGEMM6 extensively in its module to compute the coefficients for the logistic regression machine learning algorithm.
Authored by Nguyen, Khang T (Intel) Last updated on 12/12/2018 - 18:00

最大限度提升 CPU 上的 TensorFlow* 性能:推理工作负载的注意事项和建议

本文将介绍使用面向 TensorFlow 的英特尔® 优化* 进行 CPU 推理的性能注意事项
Authored by Nathan Greeneltch (Intel) Last updated on 08/09/2019 - 02:02

应用蚁群优化算法 (ACO) 实施交通网络扩展

In this article an OpenMP* based implementation of the Ant Colony Optimization algorithm was analyzed for bottlenecks with Intel® VTune™ Amplifier XE 2016 together with improvements using hybrid MPI-OpenMP and Intel® Threading Building Blocks were introduced to achieve efficient scaling across a four-socket Intel® Xeon® processor E7-8890 v4 processor-based system.
Authored by Sunny G. (Intel) Last updated on 10/15/2019 - 16:40

第二代英特尔® 至强® 可扩展处理器产品家族技术概述

介绍第二代英特尔® 至强® 可扩展处理器产品家族的新特性、增强功能以及为开发人员带来的优势
Authored by David Mulnix (Intel) Last updated on 10/15/2019 - 16:40

面向英特尔® 架构优化的 Caffe*:使用现代代码技巧

This paper demonstrates a special version of Caffe* — a deep learning framework originally developed by the Berkeley Vision and Learning Center (BVLC) — that is optimized for Intel® architecture.
Authored by Last updated on 10/15/2019 - 16:50

基于英特尔® 至强™ 处理器 E5 产品家族的多节点分布式内存系统上的 Caffe* 培训

Caffe is a deep learning framework developed by the Berkeley Vision and Learning Center (BVLC) and one of the most popular community frameworks for image recognition. Caffe is often used as a benchmark together with AlexNet*, a neural network topology for image recognition, and ImageNet*, a database of labeled images.
Authored by Gennady F. (Blackbelt) Last updated on 10/15/2019 - 16:50