Filters

Responsive Landing Page

课程:机器人深度学习 | 英特尔® 人工智能开发人员计划

了解在许多机器人工作负载中使用深度学习算法的基础知识。
Authored by David C. (Intel) Last updated on 08/16/2019 - 15:41
Responsive Landing Page

Курс: «Глубинное обучение для робототехники» | Программа Intel® AI Developer Program

Узнайте основы использования алгоритмов глубинного обучения для множества рабочих нагрузок робототехники.
Authored by David C. (Intel) Last updated on 08/16/2019 - 15:43
Responsive Landing Page

Curso: Aprendizaje profundo sobre robótica | Intel® AI Developer Program

Conozca las bases para usar algoritmos de aprendizaje profundo en diversas cargas de trabajo de robótica.
Authored by David C. (Intel) Last updated on 08/16/2019 - 15:44
Responsive Landing Page

Curso: Compreensão aprofundada sobre Robótica | Programa para desenvolvedores de IA da Intel®

Aprenda os fundamentos do uso de algoritmos de aprendizado profundo em várias cargas de trabalho de robótica.
Authored by David C. (Intel) Last updated on 08/16/2019 - 15:45
Article

Introduction to Remote Program Logic under Python*

About this Series

By David Mertz, Ph.D.

Authored by Last updated on 06/07/2017 - 09:31
Article

General installation information

Installation prerequisites, tips, and possible problems for the Intel MPI Library
Authored by Last updated on 06/07/2017 - 10:46
Article

Using Intel MKL BLAS and LAPACK with PETSc

This document contains instructions for linking to Intel MKL BLAS and LAPACK functions when building the PETSc libraries. also introduce how to enable Sparse Linear operation include Sparse BLAS and Intel® MKL PARDISO and Cluster PARDISO as direct solver in PETSc applications.
Authored by Ying H. (Intel) Last updated on 03/27/2019 - 13:20
Article

Using Intel® MKL in your Python* program

Some instructions and a simple example showing how to call Intel® MKL from Python*,
Authored by TODD R. (Intel) Last updated on 12/10/2018 - 13:29
Article

Intel® MKL with NumPy, SciPy, MATLAB, C#, Python, NAG and More

The following article explains on using Intel® MKL with NumPy/SciPy, Matlab, C#, Java, Python, NAG, Gromacs, Gnu Octave, PETSc, HPL, HPCC, IMSL etc.
Authored by Gennady F. (Blackbelt) Last updated on 06/23/2019 - 18:50
Article

Numpy/Scipy with Intel® MKL and Intel® Compilers

This guide is intended to help current NumPy/SciPy users to take advantage of Intel® Math Kernel Library (Intel® MKL).
Authored by Vipin Kumar E K (Intel) Last updated on 07/11/2018 - 18:00