Filters

119123 Matching Results
Documentation

?gsvj1 from Reference Manual for Intel® Math Kernel Library 11.2 Update 3

Pre-processor for the routine ?gesvj, applies Jacobi rotations targeting only particular pivots.

Last updated on 07/06/2015 - 18:00
Documentation

ieeeck from Reference Manual for Intel® Math Kernel Library 11.2 Update 3

Checks if the infinity and NaN arithmetic is safe. Called by ilaenv.

Last updated on 07/06/2015 - 18:00
Documentation

?laed2 from Reference Manual for Intel® Math Kernel Library 11.2 Update 3

Used by sstedc/dstedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is tridiagonal.

Last updated on 07/06/2015 - 18:00
Documentation

p?geqlf from Reference Manual for Intel® Math Kernel Library 11.2 Update 3

Computes the QL factorization of a general matrix.

Last updated on 07/06/2015 - 18:00
Documentation

?lar2v from Reference Manual for Intel® Math Kernel Library 11.2 Update 3

Applies a vector of plane rotations with real cosines and real/complex sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices.

Last updated on 07/06/2015 - 18:00
Documentation

pmpcol from Reference Manual for Intel® Math Kernel Library 11.2 Update 3

Finds the collaborators of a process.

Last updated on 07/06/2015 - 18:00
Documentation

?lauum from Reference Manual for Intel® Math Kernel Library 11.2 Update 3

Computes the product U*UT(U*UH) or LT*L (LH*L), where U and L are upper or lower triangular matrices (blocked algorithm).

Last updated on 07/06/2015 - 18:00
Documentation

?la_gercond from Reference Manual for Intel® Math Kernel Library 11.2 Update 3

Estimates the Skeel condition number for a general matrix.

Last updated on 07/06/2015 - 18:00
Documentation

?spmv from Reference Manual for Intel® Math Kernel Library 11.2 Update 3

Computes a matrix-vector product for complex vectors using a complex symmetric packed matrix.

Last updated on 07/06/2015 - 18:00
Documentation

p?dttrs from Reference Manual for Intel® Math Kernel Library 11.2 Update 3

Solves a system of linear equations with a diagonally dominant-like tridiagonal distributed matrix using the factorization computed by p?dttrf.

Last updated on 07/06/2015 - 18:00
For more complete information about compiler optimizations, see our Optimization Notice.