‹ Back to Video Series: Software Visualization Track

SDVis and In-Situ Visualization on Texas Advanced Computing Center's (TACC) Stampede

  • Overview
  • Resources

Speaker: Paul Navrátil, Texas Advanced Computing Center (TACC)

The design emphasis for supercomputing systems has moved from raw performance to performance-per-watt, and as a result, supercomputing architectures are converging on processors with wide vector units and many processing cores per chip. Such processors are capable of performant image rendering purely in software. This improved capability is fortuitous, since the prevailing homogeneous system designs lack dedicated, hardware-accelerated rendering subsystems for use in data visualization. Reliance on this “software-defined” rendering capability will grow in importance since, due to growing data sizes, visualizations must be performed on the same machine where the data is produced. Further, as data sizes outgrow disk I/O capacity, visualization will be increasingly incorporated into the simulation code itself (in situ visualization).

This talk presents recent work in high-fidelity visualization using the OSPRay ray tracing framework on TACC’s local and remote visualization systems. We present work using OSPRay within ParaView Catalyst in situ framework from Kitware, including capitalizing on opportunities to reduce data costs migrating through VTK filters for visualization. We highlight the performance opportunities and advantages of Intel® Advanced Vector Extensions 512, the memory system improvements possible with Intel® Xeon Phi™ processor multi-channel DRAM (MCDRAM) and the Intel® Omni-Path Architecture interconnect.