Documentación

 

Resultados de búsqueda: 503

Refinar por

    Resultados para:

Real-time Product Recommendations for Office Depot* Using Apache Spark* and Analytics Zoo on AWS*

For e-commerce success, real-time recommender systems involve training DNNs to build efficient recommender systems to increase website revenue.

Use the Intel® Distribution of OpenVINO™ Toolkit to Create Python* Projects for Intel® System Studio

Publicado el 1 de julio de 2019

Introduction

This guide is for developers interested in creating computer vision, AI, IoT, and cloud-based applications using the Intel®...

Raspberry Pi* 3A+ with NCS

Use the Model Downloader and Model Optimizer for the Intel® Distribution of OpenVINO™ Toolkit on Raspberry Pi*

This article describes how to use the model downloader and model optimizer fo OpenVINO on Raspbian* (stretch) OS. A caffe model is an example.

Accelerating Document Classification (Training) using Intel® Optimization for TensorFlow* on Intel® Xeon® Scalable Processors

Publicado el 27 de junio de 2019

Overview

Most of the success of modern AI, especially deep learning algorithms, is due to its impressive results in image classification where...

Enabling Real-Time Face Expression Classification using Intel® OpenVINO™

Publicado el 27 de junio de 2019

This paper focus on the inference optimization process of a facial expression recognition system based on InceptionV3 and MobileNet architectures.

Performance and Agility with Big Data in a Containerized Environment

Publicado el 15 de marzo de 2017, actualizado el 27 de junio de 2019Por Michael G.

Enterprise software developers no longer need to choose between performance and agility for big data analytics. BlueData...

Video Series: AI Practitioners Guide | Part 1: Introduction

Última actualización: 26 de junio de 2019Duración de video: 5 min

Obtain a high-level overview of business and data strategy that a machine learning practitioner needs to know. Follow detailed instructions on how to install and validate one of the popular artificial intelligence frameworks, TensorFlow*, on the Intel® Xeon® Scalable platform.

Video Series: AI Practitioners Guide for Beginners | Part 2: Bare Metal

Última actualización: 26 de junio de 2019Duración de video: 4 min

Learn the definition of a bare metal environment and how to train and test the single-node TensorFlow* framework and the multinode Intel® Xeon® Scalable platform in that environment.

Video Series: AI Practitioners Guide for Beginners | Part 3: Use AI Containers

Última actualización: 26 de junio de 2019Duración de video: 3 min

Learn to use Docker* images with Intel® Optimization for TensorFlow* to deploy the TensorFlow framework on an Intel® Xeon® Scalable processor.

Video Series: AI Practitioners Guide for Beginners | Part 4: AI in the Cloud

Última actualización: 26 de junio de 2019Duración de video: 3 min

Learn about deploying the TensorFlow* framework on the Intel® Xeon® Scalable processor via the cloud.

Video Series: AI Practitioners Guide for Beginners | Part 5: Conclusion

Última actualización: 26 de junio de 2019Duración de video: 1 min

Recap what you learned in this series and find resources to help further your AI development.

Page icon

Intel® Innovators and Intel® Student Ambassadors at AI Summit Bangalore

Última actualización: 25 de junio de 2019Duración de video: 3 min

The Intel® Student Ambassador and Intel® Software Innovator summit was held in Bangalore in June. Twelve student ambassadors and seventeen software innovators attended to train on Intel® tools and share AI ideas and projects. The three day agenda was action packed with a hands on workshop, fun activities, hackathon and a Gala Awards Night.

QuikFynd Advanced Data Search

Tame fragmented data with QuikFynd advanced data search using the OpenVINO™ toolkit

ORBO* AI Harnessing the OpenVINO™ Toolkit to Revolutionize Image Upscaling

Publicado el 25 de junio de 2019

The primary focus of Orbo has been to bring visual enhancements using a real-time, super resolution technology for video and images.

wrnch* Democratizing Marker-Less Motion Capture

Publicado el 25 de junio de 2019

wrnch* helps computers make connections between what they see and know, teaching them to understand human motion and body language.

Optimizing Face Recognition Inference on Intel® Xeon® Scalable Processors

Publicado el 24 de junio de 2019

A face recognition inference experiment using Intel® Xeon® scalable processors showing the AI power of face recognition applications.

Intel logo

Graph Attention Networks Using Intel® Optimization for Tensorflow* on Intel® Xeon® Scalable Processors

Publicado el 21 de junio de 2019

The adjacency matrix in real world graph is sparse. CPU systems without discrete hardware accelerators provide competitive training

Model Serving with Analytics Zoo

Última actualización: 17 de junio de 2019Duración de video: 18 min

The tutorial illustrates how to deploy a trained deep learning model with Analytics Zoo for inference or serving. Analytics Zoo is a unified analytics and AI platform, with Apache Spark*, BigDL, TensorFlow*, Keras.

TensorFlow* on Apache Spark* with Analytics Zoo

Última actualización: 14 de junio de 2019Duración de video: 15 min

The tutorial illustrates TensorFlow* on Apache Spark* with Analytics Zoo. Analytics Zoo is a unified analytics and AI platform, with Apache Spark, BigDL, TensorFlow, Keras.

Page icon

Performance Boosting in Seldon

The Seldon Core open source machine learning deployment platform facilitates management of inference pipelines

Getting Started with the Intel® NCS2 on Linux*

Última actualización: 6 de junio de 2019Duración de video: 3 min

How to get started with the Intel® Neural Compute Stick 2 (Intel® NCS2) on Linux.

Analytics Zoo Introduction

Última actualización: 4 de junio de 2019Duración de video: 24 min

Analytics Zoo is a unified analytics and AI platform, with Apache Spark*, BigDL, Tensorflow*, Keras.

Use Analytics Zoo Keras style API to solve classification problem

Última actualización: 31 de mayo de 2019Duración de video: 11 min

The tutorial shows Analytics Zoo Keras style API for classification problem. Analytics Zoo is a unified analytics and AI platform, with Apache Spark*, BigDL, Tensorflow*, Keras.

Use Analytics Zoo Keras Style API to Solve Regression Problems

Última actualización: 22 de mayo de 2019Duración de video: 13 min

The tutorial shows Analytics Zoo Keras style API for regression problems. Analytics Zoo is a unified analytics and AI platform, with Apache Spark*, BigDL, TensorFlow*, Keras.

Windows® 10 May 2019 Update for Machine Learning Acceleration on Intel® Integrated Graphics

Intel's earlier post in May 2018 introduced the Windows ML API and the DirectML API implementation on Intel® hardware via the DirectX 12 DirectCompute

Introduction to Natural Language Processing (NLP) Architect

Última actualización: 13 de mayo de 2019Duración de video: 52 min

This webinar focuses on introducing the audience to Natural Language Processing (NLP) Architect, a Python* library from the Intel® AI Lab for exploring the state-of-the-art deep learning topologies.

Intel® CPU Outperforms NVIDIA* GPU on ResNet-50 Deep Learning Inference

Intel Xeon processor outperforms NVidia's best GPUs on ResNet-50.

Introduction to the Intel® Distribution of OpenVINO™ Toolkit and Windows Machine Learning*

Última actualización: 13 de mayo de 2019Duración de video: 1 min

In this webinar you will learn how real-time inference on the PC for visual workloads such as object detection, recognition, and tracking are now easily developed with Intel® Distribution of OpenVINO™ Toolkit and Windows Machine Learning* API.

A City Surveillance Solution from GeoVision Inc.*

Última actualización: 10 de mayo de 2019Duración de video: 1 min

This solution uses Intel® Core™ i7 processors and supports up to four simultaneous video channels that perform facial recognition and tracking, plus gender recognition. This allows up to 40 humans to be processed concurrently.

Introducing the new Packed APIs for GEMM

Publicado el 18 de agosto de 2016, actualizado el 6 de mayo de 2019Por Gennady F.

1      Introducing Packed APIs for GEMM

Matrix-matrix multiplication (GEMM) is a fundamental operation in many scientific, engineering, and...

Video Series: Hands-On AI | Part 2: Cleaning Transformations

Última actualización: 2 de mayo de 2019Duración de video: 3 min

Explore the concepts of data cleaning, which is an important aspect of data preprocessing for machine learning workloads. Get an introduction to common Keras (an open source neural network library) transformations like rescaling, gray scaling, sample wise centering, sample wise normalization, feature wise centering, and feature-wise normalization.

Video Series: Hands-On AI | Part 1: Introduction

Última actualización: 2 de mayo de 2019Duración de video: 1 min

In this video series, learn how image data preprocessing can be used to clean and augment transformations on a dataset and why it matters.

 

Video Series: Hands-On AI | Part 3: Augmentation Transformations

Última actualización: 2 de mayo de 2019Duración de video: 2 min

Learn some of the transformations used for data augmentation, an important aspect when training a model to work in varied environments. Explore rotation, horizontal shift, vertical shift, shearing, zoom, and horizontal and vertical flip transformations with examples.

Video Series: Hands-On AI | Part 4: Augmenting and Cleaning in Practice

Última actualización: 2 de mayo de 2019Duración de video: 2 min

Combine the techniques from Part 3 in a practical way to strengthen the dataset. Understand how the Keras code is used to augment a dataset in a Jupyter* Notebook running on the Intel® DevCloud.

Video Series: Hands-On AI | Part 5: Conclusion

Última actualización: 2 de mayo de 2019Duración de video: 1 min

The combination of these videos provides you with knowledge on how image data preprocessing can be used for cleaning and augmenting transformations on a dataset and why it matters.

Páginas