Artículo técnico

Intel Innovator’s Summit 2016, Part 1

I am participating in the Intel Innovator’s Summit come November 14th in Seattle. One of the hacking projects will be with the Intel Joule kit, a toy car holding our favorite animated characters along with a Real-sense camera. The summit promises to be a lot of fun.

First and foremost: The team has not decided upon which animated character to use, but I voted for Ren and Stimpy. This decision probably shows both my decrepitude as well as my twisted sense of humor.

Integration Wrappers for Intel® Integrated Performance Primitives (Intel® IPP)

To provide easy-to-use APIs and reduce the effort required to add Intel® Integrated Performance Primitives (Intel® IPP) functions to your application, Intel® IPP library introduces new Integration Wrappers APIs. These APIs aggregate multiple Intel® IPP functions and provide easy interfaces to support external threading of Intel® IPP functions. A technical preview of Integration Wrappers functionality is now available for evaluation.

Integration Wrappers consist of C and C++ interfaces:

  • Apple macOS*
  • Linux*
  • Microsoft Windows* 10
  • Microsoft Windows* 8.x
  • C/C++
  • Intel® Integrated Performance Primitives
  • July 2016 Intel DPDK/NFV DevLab Session Videos and Slides

    Learn, review, or get started with DPDK. This article contains links to all session videos and slides presented at Intel Developer Zone DPDK/NFV July 2016 Devlab.
  • Linux*
  • Redes
  • Virtualización de funciones de red (NFV, por sus siglas en inglés)
  • Red definida por software (SDN, por sus siglas en inglés)
  • OVS-DPDK Datapath Classifier

    Describes the design and implementation of the datapath classifier – aka dpcls – in Open vSwitch* (OVS) with Data Plane Development Kit (DPDK). It presents flow classification and the caching techniques, and also provides greater insight on functional details with different scenarios.
  • Linux*
  • Redes
  • Virtualización de funciones de red (NFV, por sus siglas en inglés)
  • Red definida por software (SDN, por sus siglas en inglés)
  • Pipeline and the Efficient Chef (Part 2)

    Advanced computer concepts for the (not so) common Chef

    In Pipeline and the Efficient Chef (Part 1), we showed how the basic pipeline is equivalent to what our Chef does when following one step in his recipe. To say it differently, the execution of one machine language instruction is equivalent to our Chef performing one step of a complicated recipe.

    优化数据结构和内存访问模式以改进数据局部性

    优化数据结构和内存访问模式以改进数据局部性 (PDF 782KB)

    摘要

    高速缓存是最重要的现代 CPU 资源之一:它是体积更小、速度更快的一部分内存子系统,用于保存最常用的内存位置副本。 当驻留在高速缓存中的指令需要数据时,该指令将会立即执行。 否则,指令执行过程可能会中止,直到从内存获取到所需的数据。 由于从内存中拷贝数据是一项延迟较长的操作,因此我们希望通过对算法和数据结构进行设计,以充分利用数据局部性,从而最大限度降低缓存缺失。

    本文将介绍数据局部性较差的表现、检测相关性能瓶颈的技巧,以及可解决该问题的优化方法。

  • Servidor
  • Computación en paralelo
  • Suscribirse a Artículo técnico