Computes the solution to the system of linear equations with a square distributed matrix and multiple right-hand sides.

Syntax

void psgesv (MKL_INT *n , MKL_INT *nrhs , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_INT *ipiv , float *b , MKL_INT *ib , MKL_INT *jb , MKL_INT *descb , MKL_INT *info );

void pdgesv (MKL_INT *n , MKL_INT *nrhs , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_INT *ipiv , double *b , MKL_INT *ib , MKL_INT *jb , MKL_INT *descb , MKL_INT *info );

void pcgesv (MKL_INT *n , MKL_INT *nrhs , MKL_Complex8 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_INT *ipiv , MKL_Complex8 *b , MKL_INT *ib , MKL_INT *jb , MKL_INT *descb , MKL_INT *info );

void pzgesv (MKL_INT *n , MKL_INT *nrhs , MKL_Complex16 *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_INT *ipiv , MKL_Complex16 *b , MKL_INT *ib , MKL_INT *jb , MKL_INT *descb , MKL_INT *info );

Include Files

  • mkl_scalapack.h

Description

The p?gesvfunction computes the solution to a real or complex system of linear equations sub(A)*X = sub(B), where sub(A) = A(ia:ia+n-1, ja:ja+n-1) is an n-by-n distributed matrix and X and sub(B) = B(ib:ib+n-1, jb:jb+nrhs-1) are n-by-nrhs distributed matrices.

The LU decomposition with partial pivoting and row interchanges is used to factor sub(A) as sub(A) = P*L*U, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. L and U are stored in sub(A). The factored form of sub(A) is then used to solve the system of equations sub(A)*X = sub(B).

Input Parameters

n

(global) The number of rows and columns to be operated on, that is, the order of the distributed submatrix sub(A) (n 0).

nrhs

(global) The number of right hand sides, that is, the number of columns of the distributed submatrices B and X(nrhs 0).

a, b

(local)

Pointers into the local memory to arrays of local size a: lld_a*LOCc(ja+n-1) and b: lld_b*LOCc(jb+nrhs-1), respectively.

On entry, the array a contains the local pieces of the n-by-n distributed matrix sub(A) to be factored.

On entry, the array b contains the right hand side distributed matrix sub(B).

ia, ja

(global) The row and column indices in the global matrix A indicating the first row and the first column of sub(A), respectively.

desca

(global and local) array of size dlen_. The array descriptor for the distributed matrix A.

ib, jb

(global) The row and column indices in the global matrix B indicating the first row and the first column of sub(B), respectively.

descb

(global and local) array of size dlen_. The array descriptor for the distributed matrix B.

Output Parameters

a

Overwritten by the factors L and U from the factorization sub(A) = P*L*U; the unit diagonal elements of L are not stored .

b

Overwritten by the solution distributed matrix X.

ipiv

(local) Array of size LOCr(m_a)+mb_a. This array contains the pivoting information. The (local) row i of the matrix was interchanged with the (global) row ipiv[i - 1].

This array is tied to the distributed matrix A.

info

(global) If info=0, the execution is successful.

info < 0:

If the i-th argument is an array and the j-th entry had an illegal value, then info = -(i*100+j); if the i-th argument is a scalar and had an illegal value, then info = -i.

info> 0:

If info = k, U(ia+k-1,ja+k-1) is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed.

See Also

Para obtener información más completa sobre las optimizaciones del compilador, consulte nuestro Aviso de optimización.
Seleccione el color del botón adhesivo: 
Orange (only for download buttons)