Zona para desarrolladores Intel®:
Rendimiento

Destacado

¡Recién publicado! Intel® Xeon Phi™ Coprocessor High Performance Programming 
Aprenda los principios básicos de la programación para esta nueva arquitectura y nuevos productos. ¡Nuevo!
Intel® System Studio
Intel® System Studio es una solución en forma de suite completa de herramientas de desarrollo de software integrado que puede acelerar el tiempo de inserción en el mercado, fortalecer la fiabilidad del sistema e impulsar el consumo eficaz de energía y el rendimiento. ¡Nuevo!
Si no pudo asistir: Reproducción del webinario en vivo de 2 días
Introducción al Desarrollo de aplicaciones de alto rendimiento para coprocesadores Intel® Xeon e Intel® Xeon Phi™.
Structured Parallel Programming
Los autores Michael McCool, Arch D. Robison y James Reinders utilizan un método basado en patrones estructurados que debería poner el tema al alcance de todos los desarrolladores de software.

Brinde el mejor desempeño de su aplicación a sus clientes mediante la programación en paralelo con la ayuda de los recursos innovadores de Intel.

Recursos de desarrollo


Herramientas de desarrollo

 

Intel® Parallel Studio

Oferta de paralelismo simplificado, de principio a fin, a desarrolladores de Microsoft Visual Studio* C/C++, Intel® Parallel Studio proporciona herramientas avanzadas para optimizar las aplicaciones de clientes para procesadores multi-core y manycore.

Productos Intel® para desarrollo de software

Examine todas las herramientas que le ayudan a optimizar para la arquitectura Intel.Ciertas herramientas están disponibles para una evaluación gratuita por 45 días.

Base de conocimiento de herramientas

Encuentre guías e información de asistencia técnica sobre las herramientas de Intel.

Abstract data type
By Posted 05/05/20080
An abstract data type (ADT) is a data type defined by its set of allowed values and the available operations on those values. The values and operations are defined independently of a particular representation of the values or implementation of the operations. In a programming language that dire...
SOA? ESB? What is all this?
By Mahesh Bhat (Intel)Posted 05/02/200810
Lots of nice articles have been published on the net on both Service Oriented Architecture (SOA) and Enterprise Server Bus (ESB). This topic is being discussed quite heavily for last few years but started gaining weight as ESBs started getting more and more matured. To start this series, I am pl...
Intel® AVX: New Frontiers in Performance Improvements and Energy Efficiency
By Mark Buxton (Intel)Posted 03/31/20081
Download PDF Intel® AVX: New Frontiers in Performance Improvements and Energy Efficiency [PDF 72KB] Introduction As the need for more computing performance continues to grow across industry segments, Intel continues to lead in innovation and the delivery of greater compute capacity to support the...
Concurrency_minisummit
By Paul Steinberg (Intel)Posted 01/10/20080
     

Páginas

Suscribirse a
No se encontró contenido
Suscribirse a Blogs de la Zona para desarrolladores Intel®
algorithms
By lara h.0
Hello, look down the the following link...it's about parallel partition... http://www.redgenes.com/Lecture-Sorting.pdf I have tried to simulate this parallel partition method ,but i don't think it will scale cause we have to do a merging,which essentially is an array-copy operation but this array-copyoperations will be expensive compared to an integer compareoperation that you find inside the partition fuinction, and it will stillbe expensive compared to a string compare operation that you findinside the partition function. So since it's not scaling i have abondonedthe idea to implement this parallel partition method in my parallelquicksort. I have also just read the following paper about Parallel Merging: http://www.economyinformatics.ase.ro/content/EN4/alecu.pdf And i have implemented this algorithm just to see what is its performance.and i have noticed that the serial algorithm is 8 times slower than themergefunction that you find in the serial mergesort algorithm.So 8 times slow...
Complexity rank of cache locking
By Klara Z.3
Welcome, I know CPU cycles needed by locking vary, but I need some general picture about how heavy is cache locking. Particularly, for P6+ chip, what rank of the number of cycles consumed by LOCK BTS / INC / DEC would be, if the operand is already cashed memory? By rank I mean, would it be like 10 or rather 100?
Why Sequential Semantic on x86/x86_64 is using through MOV [addr], reg + MFENCE instead of +SFENCE?
By AlexeyAB0
At Intel x86/x86_64 systems have 3 types of memory barriers: lfence, sfence and mfence. The question in terms of their use. For Sequential Semantic (SC) is sufficient to use MOV [addr], reg + MFENCE for all memory cells requiring SC-semantics. However, you can write code in the whole and vice versa: MFENCE + MOV reg, [addr]. Apparently felt, that if the number of stores to memory is usually less than the loads from it, then the use of write-barrier in total cost less. And on this basis, that we must use sequential stores to memory, made another optimization - [LOCK] XCHG, which is probably cheaper due to the fact that "MFENCE inside in XCHG" applies only to the cache line of memory used in XCHG (video where on 0:28:20 said that MFENCE more expensive that XCHG). GCC 4.8.2 uses this approach of using: LOAD(without fences) and STORE + MFENCE, such as writen there: http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html C/C++11 Operation x86 implementation Load Seq_Cst: MOV (from memory) ...
OpenMP does not like fmax/fabs
By Jon U.9
We have a code that is exhibiting greatly different runtimes between a Fortran and C version. The problem has been isolated to one simple loop: #pragma omp parallel for reduction(max:dt) for(i = 1; i <= NR; i++){ for(j = 1; j <= NC; j++){ dt = fmax( fabs(t[i][j]-t_old[i][j]), dt); t_old[i][j] = t[i][j]; } } Which runs about 12 times slower than the equivalent Fortran loop: !$omp parallel do reduction(max:dt) Do j=1,NC Do i=1,NR dt = max( abs(t(i,j) - told(i,j)), dt ) Told(i,j) = T(i,j) Enddo Enddo !$omp end parallel do Removing the dt assignment eliminates the disparity. Also, running these as serial codes shows no disparity, do the problem is not that the actual C implementation is just so bad. Also, eliminating just the reduction does not close the gap, so it is not the reduction operation itself. All of those tests lead us to the conclusion that there is some terrible interaction between OpenMP and fmax/abs. Any...
Parallelizing my existing code in TBB please help me with this errors
By Girija B.3
Hi , I am new to TBB and working on parallelizing my existing code. I could easilt paralleize with OpenMP but we need to check the performance of our code in Both TBB and OpenMP after parallelization hence i tried parallelizing the code but i am getting errors which i am not able to reslove please help kindly help me with these errors.My code is as below just using a parallel for loop and lambda function i ahve all serial , openmp and tbb changes i have made please do look at teh code and tell me what else i shud change for tbb to work.         case openmp:        {            #pragma omp parallel for private (iter, currentDB, db)            for (iter = 1; iter < numDB; iter++)            {                 currentDB = this->associateDBs->GetAssociateDB(iter);                db = this->dbGroup.getDatabase( currentDB );                GeoRanking::GeoVerifierResultVector  resLocal;                db->recog( fg, InternalName, resLocal );                LOG(info,omp_get_t...
Selecting custom victim in job scheduling on NUMA systems
By kadir.akbudak1
I have a NUMA system. There is a thread for each core in the system. Threads that process similar data are assigned to the same node to reuse the data in the large L3 cache of the node. I want threads that are assigned to the same node should steal each other's jobs. If all jobs on a node have finished, these threads should steal jobs assigned to threads on other nodes. How can I implement this via OpenMP?
cache topology
By Ilya Z.13
hi, I'm writting cpuid program. I need help with getting number of each type of cache. not its size, but the number. for example i need get info such as below: L1 data cache = 2 x 64KB. CPUID will give me the size of each sort of cache, but not its number. On MSDN i've found that GetLogicalProcessorsInformationEx proc might be helpful to get that number. but i'm not sure do i understood it right. I guess, that member of CACHE_RELATIONSHIP structure, the GROUP_AFFINITY will be related with quantity. Could some give me some hints or explain what this proc exactly does or tell me were else find such infos. thanks in advance
Poor openmp performance
By Ronglin J.5
We have E5-2670 * 2, 16 cores in total.We get the openmp performance as follows (the code is also attached below):  NUM THREADS:           1 Time:    1.53331303596497    NUM THREADS:           2 Time:   0.793078899383545  NUM THREADS:           4 Time:   0.475617885589600  NUM THREADS:           8 Time:   0.478277921676636  NUM THREADS:          14 Time:   0.479882955551147  NUM THREADS:          16 Time:   0.499575138092041      OK, this scaling is very poor when the thread number larger than 4. But if I uncomment the lines 17 and 24, let the initialization is also done by openmp. The different results are:  NUM THREADS:           1 Time:    1.41038393974304  NUM THREADS:           2 Time:   0.723496913909912  NUM THREADS:           4 Time:   0.386450052261353  NUM THREADS:           8 Time:   0.211269855499268  NUM THREADS:          14 Time:   0.185739994049072  NUM THREADS:          16 Time:   0.214301824569702 Why the performances are so different? Some information:ifort v...

Páginas

Suscribirse a Foros

Destacado

Haga que el rendimiento prospere - Usando la innovación de código abierto desarrollado por las herramientas Intel ›


¡Obtenga LA GUÍA y empiece de inmediato! Subprocesamiento de aplicaciones, administración de memorias, herramientas de programación y sincronización.
Guía Intel para desarrollar aplicaciones con multi-subprocesos ›


¡Rápido, fácil y gratis!
Intel® Concurrency Checker ›


Imagine el futuro ahora.
Intel® AVX ›


Intel® Parallel Studio XE
Reciba un software para evaluación gratis ›