Article

面向英特尔® Parallel Studio XE 集群版的无密码 SSH 安装

我在我的集群中建立了一个安全的 shell (SSH) 连接,其中每个节点都有一个公共密钥。 但是,当我在集群上使用安全的 shell 实用程序时,系统还是提示我输入密码。 哪里出问题了?

Autor Gergana S. (Blackbelt) Última actualización 05/07/2019 - 13:45
Article

面向使用 PME 工作负载的对称英特尔® MPI 的 GROMACS 方案

目标

该文件包(脚本及其说明)提供了针对对称英特尔运行的构建和运行环境。 该文件实际上是自述 (README) 文件包。 对称指采用至强™ 可执行文件和至强融核™ 可执行文件,两者通过英特尔 MPI 同时运行以传输 MPI 消息和集体数据。

Autor Heinrich Bockhorst (Intel) Última actualización 06/07/2019 - 16:40
Article

著作 - High Performance Parallelism Pearls

A look into the contents of the two "Pearls" books, edited by James Reinders and Jim Jeffers. These books contain a collection of examples of code modernization.
Autor Mike P. (Intel) Última actualización 21/03/2019 - 12:00
Article

基于英特尔® 至强™ 处理器 E5 产品家族的多节点分布式内存系统上的 Caffe* 培训

Caffe is a deep learning framework developed by the Berkeley Vision and Learning Center (BVLC) and one of the most popular community frameworks for image recognition. Caffe is often used as a benchmark together with AlexNet*, a neural network topology for image recognition, and ImageNet*, a database of labeled images.
Autor Gennady F. (Blackbelt) Última actualización 05/07/2019 - 14:55
Article

面向英特尔® 至强融核™ 处理器(代号“Knights Landing”)的开发人员访问计划

Intel is bringing to market, in anticipation of general availability of the Intel® Xeon Phi™ Processor (codenamed Knights Landing), the Developer Access Program (DAP). DAP is an early access program for developers worldwide to purchase an Intel Xeon Phi Processor based system.
Autor Mike P. (Intel) Última actualización 21/03/2019 - 12:00
Article

应用蚁群优化算法 (ACO) 实施交通网络扩展

In this article an OpenMP* based implementation of the Ant Colony Optimization algorithm was analyzed for bottlenecks with Intel® VTune™ Amplifier XE 2016 together with improvements using hybrid MPI-OpenMP and Intel® Threading Building Blocks were introduced to achieve efficient scaling across a four-socket Intel® Xeon® processor E7-8890 v4 processor-based system.
Autor Sunny G. (Intel) Última actualización 05/07/2019 - 19:13
Article

3D 同性声波有限差分波动方程代码:多核处理器实施与分析

有限差分是一个简单有效的数学工具,用于求解微分方程。在本文中,我们将利用明确的时间域有限差分求解同性声波 3D 波动方程。

Autor Sunny G. (Intel) Última actualización 06/07/2019 - 16:30