Forum topic

why mic busspeedreadback and busspeeddownload is not steady?

~i have made a test about the BusSpeedReadback.

when the data is not small,it's performance is 6.xxGB/s.

Bus when the data reach to 1GB,the performance is not steady.

Autor Última actualización 04/01/2019 - 14:10
Mensajes en el blog

视频 - 借助英特尔至强融核协处理器实现并行编程

Colfax International 最近发布了下列一组关于英特尔(R) 至强融核(TM) 协处理器的视频。

Autor Mike P. (Intel) Última actualización 06/07/2019 - 17:10
Mensajes en el blog

视频 - 借助英特尔至强融核协处理器实现并行编程和优化

下面是 Colfax International 发布的一组关于借助英特尔(R) 至强融核(TM) 协处理器实现并行编程和优化的视频。

Autor Mike P. (Intel) Última actualización 06/07/2019 - 17:10
Article

面向使用 PME 工作负载的对称英特尔® MPI 的 GROMACS 方案

目标

该文件包(脚本及其说明)提供了针对对称英特尔运行的构建和运行环境。 该文件实际上是自述 (README) 文件包。 对称指采用至强™ 可执行文件和至强融核™ 可执行文件,两者通过英特尔 MPI 同时运行以传输 MPI 消息和集体数据。

Autor Heinrich Bockhorst (Intel) Última actualización 06/07/2019 - 16:40
Article

著作 - High Performance Parallelism Pearls

A look into the contents of the two "Pearls" books, edited by James Reinders and Jim Jeffers. These books contain a collection of examples of code modernization.
Autor Mike P. (Intel) Última actualización 21/03/2019 - 12:00
Article

异构分布式系统上的有限差分

Our building block is the FD compute kernels that are typically used for RTM (reverse time migration) algorithms for seismic imaging. The computations performed by the ISO-3DFD (Isotropic 3-dimensional finite difference) stencils play a major role in accurate imaging of complex subsurface structures in oil and gas surveys and exploration. Here we leverage the ISO-3DFD discussed in [1] and [2] and...
Autor Leonardo B. (Intel) Última actualización 06/07/2019 - 16:40
Article

面向英特尔® 至强融核™ 处理器(代号“Knights Landing”)的开发人员访问计划

Intel is bringing to market, in anticipation of general availability of the Intel® Xeon Phi™ Processor (codenamed Knights Landing), the Developer Access Program (DAP). DAP is an early access program for developers worldwide to purchase an Intel Xeon Phi Processor based system.
Autor Mike P. (Intel) Última actualización 21/03/2019 - 12:00
Article

3D 同性声波有限差分波动方程代码:多核处理器实施与分析

有限差分是一个简单有效的数学工具,用于求解微分方程。在本文中,我们将利用明确的时间域有限差分求解同性声波 3D 波动方程。

Autor Sunny G. (Intel) Última actualización 06/07/2019 - 16:30