Zone des développeurs Intel® :
Performance

Points forts

Juste publié ! Intel® Xeon Phi™ Coprocessor High Performance Programming 
Apprenez les fondements de la programmation pour cette nouvelle architecture et les nouveaux produits. Nouveau !
Intel® System Studio
Intel® System Studio est une suite exhaustive d’outils intégrés de développement de logiciels qui peut accélérer la mise sur le marché, renforcer la fiabilité des systèmes et améliorer l’efficacité énergétique et les performances. Nouveau !
Au cas où vous l’avez manqué – Rediffusion du webinaire en direct de deux jours
Introduction au développement d’applications hautes performances pour processeurs Intel® Xeon® et coprocesseurs Intel® Xeon Phi™.
Structured Parallel Programming
Les auteurs Michael McCool, Arch D. Robison et James Reinders utilisent une approche basée sur des modèles structurés qui devrait rendre le sujet accessible à tous les développeurs de logiciels.

Optimisez les performances de vos applications grâce à la programmation parallèle et avec l'aide des ressources novatrices d'Intel.

Ressources de développement


Outils de développement

 

Intel® Parallel Studio

Intel® Parallel Studio, qui apporte aux développeurs Microsoft Visual Studio* C/C++ un traitement parallèle de bout en bout simplifié, fournit des outils avancés permettant d’optimiser les applications clientes pour un traitement multicœur et à nombreux cœurs.

Produits Intel® de développement logiciel ›

Explorez tous les outils qui vous aideront à optimiser vos applications pour l’architecture Intel. Certains outils sont disponibles pour une période d’évaluation gratuite de 45 jours.

Base de connaissances sur les outils

Trouvez des guides et des informations d'assistance sur les outils Intel.

Data parallel
Par Publié le 05/15/20081
A type of parallel computing in which the concurrency is expressed by applying a single stream of instructions simultaneously to the elements of a data structure.
Counting semaphore
Par Publié le 05/06/20080
See semaphore.
Concurrent program
Par Publié le 05/06/20080
A program that supports concurrent execution.
Concurrent execution
Par Publié le 05/06/20080
A condition in which two or more units of execution (UEs) are active and making progress at the same time. This can be either because they are being executed at the same time on different processing elements (PEs), or because the actions of the UEs are interleaved on the same processing element.
S’abonner à Articles de la Zone des développeurs Intel
Aucun contenu trouvé
S’abonner à Blogs de la Zone des développeurs Intel®
Locking CPU cache lines for a thread ( L1)
Par Younis A.14
Hi I'm working on securing access to L1 cache by locking it line by line. Is there any way to do it? For example, two threads accessing the L1 and L1 lines are locked for a certain time to each thread accessed them. Regards, Younis
Responsive OpenMP Theads in Hybrid Parallel Environment
Par Don K.1
I have a Fortran code that runs both MPI and OpenMP.  I have done some profiling of the code on an 8 core windows laptop varying the number of mpi  tasks vs. openmp threads and have some understanding of where some performance bottlenecks for each parallel method might surface.  The problem I am having is when I port over to a Linux cluster with several 8-core nodes.  Specifically, my openmp thread parallelism performance is very poor.  Running 8 mpi tasks per node is significantly faster than 8 openmp threads per node (1 mpi task), but even 2 omp threads + 4 mpi tasks runs was running very slowly, more so than I could solely attribute to a thread starvation issue.  I saw a few related posts in this area and am hoping for further insight and recommendations in to this issue.  What I have tried so far ... 1.  setenv OMP_WAIT_POLICY active      ## seems to make sense 2.  setenv KMP_BLOCKTIME 1          ## this is counter to what I have read but when I set this to a large number (2500...
Optimizing cilk with ternary conditional
Par Fabio G.3
What is the best way to optimize the cycle cilk_for(i=0;i<n;i++){ x[i]=x[i]<0?0:x[i]; }or somethings like that? Thanks, Fabio
have asked them to
Par Robert P.0
ICC t20 World Cup 2014 Live StreamIndia vs Pakistan Live Stream
Optimizing reduce_by_key implementation using TBB
Par Shruti R.0
Hello Everyone, I'm quite new to TBB & have been trying to optimize reduce_by_key implementation using TBB constructs. However serial STL code is always outperforming the TBB code! It would be helpful if I'm given an idea about how reduce_by_key can be improvised using tbb::parallel_scan. Any help at the earliest would be much appreciated. Thanks.
reading a shared variable
Par VIKRANT G.4
hello everyone I am relatively new to parallel programming and have the following doubt:- is reading a shared variable(that is not modified by any thread) without using locks a good practice thanks for the help in advance  
Weird Openmp bug
Par Cheng C.1
Dear all, I want to combine OpenMP and RSA_public_encrypt and RSA_private_decrypt routines. However, I was confused by a weird bug for a few days.    In the attached program, if I generated 2 threads for parallel encryption and decryption, everything works well. If I generated 3 or more threads, the RSA_public_encrypt routine works fine. All strings are successfully encrypted (encrypt_len=256). However, the RSA_private_decrypt routine went wrong, that is, only one thread works properly, all the other threads failed to decrypt some of the strings (decrypt_len=-1, rsa_eay_private_decrypt padding check failed). If there are 1000 strings and 4 threads, the total number of string failed to decrypt went around 710 (some times as low as around 200). So as expected, if I use 4 threads for parallel RSA_public_encrypt and one thread for RSA_private_decrypt, nothing went wrong.   It would be great if you could give some ideas. Thanks very much.    #include <openssl/rsa.h> #include <...
performance loss
Par Bo W.8
Hi, some interesting performance loss happened with my measurements. I have a system with two sockets, each socket is a E5-2680 processor. Each processor has 8 cores and with hyper-threading. The hyper-threading was ignored.  On this system, I started a program 16 times at the same time and each time pinned the program to different cores. At first, i set all cores to 2.7GHz and saw : Program 0 Runtime 7.7s Program 8 Runtime 7.63s And then, i set  cores on the second socket  to 1.2GHz and saw: Program 0 Runtime 12.18s Program 8 Runtime 15.73s The program 8 ran slower. It is clear, because core 8 had lower frequency. But why was program 0 also slower? Its frequency wasn't touched.   Regards, Bo
S’abonner à Forums

Points forts