Article

Loop Modifications to Enhance Data-Parallel Performance

When confronted with nested loops, the granularity of the computations that are assigned to threads will directly affect performance. Loop transformations such as splitting and merging nested loops can make parallelization easier and more productive.
Criado por administrar Última atualização em 05/07/2019 - 14:47
Article

Granularity and Parallel Performance

One key to attaining good parallel performance is choosing the right granularity for the application. Granularity is the amount of real work in the parallel task. If granularity is too fine, then performance can suffer from communication overhead.
Criado por administrar Última atualização em 05/07/2019 - 19:52
Article

OpenMP* and the Intel® IPP Library

How to configure OpenMP in the Intel IPP library to maximize multi-threaded performance of the Intel IPP primitives.
Criado por Última atualização em 31/07/2019 - 14:30
Article

Optimize Data Structures and Memory Access Patterns to Improve Data Locality

GOptimize Data Structures and Memory Access Patterns to I

Criado por Victoria Gromova (Intel) Última atualização em 05/07/2019 - 19:47
Article

The Importance of Vectorization for Intel Microarchitectures (Fortran Example)

Reference Link and Download

Intel Vectorization Tools

Criado por Martyn Corden (Intel) Última atualização em 03/07/2019 - 20:00
Article

Improving Averaging Filter Performance Using Intel® Cilk™ Plus

Intel® Cilk™ Plus is an extension to the C and C++ languages to support data and task parallelism.  It provides three new keywords to i

Criado por Anoop M. (Intel) Última atualização em 12/12/2018 - 18:00
Article

Webinar: Fortran Standard Parallel Programming Features

Fortran Standard Parallel Programming Features in Intel Compilers
Criado por Última atualização em 04/07/2019 - 10:00
Article

Explicit Vector Programming – Best Known Methods

Vectorizing improves performance, and achieving high performance can save power. Introduction to tools for vectorizing compute-intensive processing.
Criado por Última atualização em 24/04/2019 - 11:25
Article

循环修改增强数据并行性能

When confronted with nested loops, the granularity of the computations that are assigned to threads will directly affect performance. Loop transformations such as splitting and merging nested loops can make parallelization easier and more productive.
Criado por administrar Última atualização em 05/07/2019 - 14:48
Article

粒度与并行性能

One key to attaining good parallel performance is choosing the right granularity for the application. Granularity is the amount of real work in the parallel task. If granularity is too fine, then performance can suffer from communication overhead.
Criado por administrar Última atualização em 05/07/2019 - 19:53