英特尔® MKL-DNN:第二部分 – 代码示例创建与详解

在本篇中 (系列教程第二部分),将介绍如何配置集成开发环境 (IDE),以创建 C++ 代码示例,并提供基于 AlexNet* 深度学习拓扑的代码详解。
Criado por Bryan B. (Intel) Última atualização em 23/05/2018 - 11:00
Mensagem de blog

英特尔® 数据分析加速库

The Intel® Data Analytics Acceleration Library (Intel® DAAL) helps speed big data analytics by providing highly optimized algorithmic building blocks for all data analysis stages (Pre-processing, Transformation, Analysis, Modeling, Validation, and Decision Making) for offline, streaming and distributed analytics usages. It’s designed for use with popular data platforms including Hadoop*, Spark*,...
Criado por James R. (Blackbelt) Última atualização em 27/08/2019 - 13:50

面向英特尔® 架构优化的 Caffe*:使用现代代码技巧

This paper demonstrates a special version of Caffe* — a deep learning framework originally developed by the Berkeley Vision and Learning Center (BVLC) — that is optimized for Intel® architecture.
Criado por Última atualização em 15/10/2019 - 16:50

基于英特尔® 至强™ 处理器 E5 产品家族的多节点分布式内存系统上的 Caffe* 培训

Caffe is a deep learning framework developed by the Berkeley Vision and Learning Center (BVLC) and one of the most popular community frameworks for image recognition. Caffe is often used as a benchmark together with AlexNet*, a neural network topology for image recognition, and ImageNet*, a database of labeled images.
Criado por Gennady F. (Blackbelt) Última atualização em 15/10/2019 - 16:50