Документация

 

Результаты поиска: 516

Уточнить по

    Результаты для:

RayOnSpark: Running Emerging AI Applications on Big Data Clusters with Ray* and Analytics Zoo

Опубликовано: 31 июля 2019 г.Автор: Jason Dai

Introduces RayOnSpark, a feature recently added to Analytic Zoo.

Conversational Agents with NLP Architect by Intel® AI Lab for AI Applications at the Edge

Опубликовано: 31 июля 2019 г.Автор: Bruce Hopkins

NLP Architect uses Intent Extraction to process Natural Language. A Java* 9 client app demo invokes the NLP Architect server deployed at the Edge.

Getting Started with the Intel® Neural Compute Stick 2 on Windows*

Последнее обновление: 30 июля 2019 г.Время видео: 4 мин

Illustrates the steps to get started with the Intel® Neural Compute Stick 2 (Intel® NCS 2) on a Windows® 10 64-bit system, including the installation of the Intel® Distribution of OpenVINO™ toolkit.

Get Started with Intel® Neural Compute Stick 2 on Raspbian*

Последнее обновление: 30 июля 2019 г.Время видео: 3 мин

How to get started with the Intel® Neural Compute Stick 2 (Intel® NCS2) on Raspbian*

Getting Started with Intel® Optimization for MXNet*

Опубликовано: 16 июля 2019 г.Автор: Ying H.

Intel had a long-term collaboration with Apache* MXNet* (incubating) community to accelerate neural network operators in CPU backend.

Real-time Product Recommendations for Office Depot* Using Apache Spark* and Analytics Zoo on AWS*

Опубликовано: 2 июля 2019 г.Автор: Song, Guoqiong

For e-commerce success, real-time recommender systems involve training DNNs to build efficient recommender systems to increase website revenue.

Raspberry Pi* 3A+ with NCS

Use the Model Downloader and Model Optimizer for the Intel® Distribution of OpenVINO™ Toolkit on Raspberry Pi*

Опубликовано: 1 июля 2019 г.Автор: Wilbur, Marcia

This article describes how to use the model downloader and model optimizer fo OpenVINO on Raspbian* (stretch) OS. A caffe model is an example.

Use the Intel® Distribution of OpenVINO™ Toolkit to Create Python* Projects for Intel® System Studio

Опубликовано: 1 июля 2019 г.

Introduction

This guide is for developers interested in creating computer vision, AI, IoT, and cloud-based applications using the Intel®...

Accelerating Document Classification (Training) using Intel® Optimization for TensorFlow* on Intel® Xeon® Scalable Processors

Опубликовано: 27 июня 2019 г.

Overview

Most of the success of modern AI, especially deep learning algorithms, is due to its impressive results in image classification where...

Performance and Agility with Big Data in a Containerized Environment

Опубликовано: 15 марта 2017 г., обновлено 27 июня 2019 г.Автор: Michael G.

Big data analytics solution developers no longer need to choose between performance and agility.

Enabling Real-Time Face Expression Classification using Intel® OpenVINO™

Опубликовано: 27 июня 2019 г.

This paper focus on the inference optimization process of a facial expression recognition system based on InceptionV3 and MobileNet architectures.

Video Series: AI Practitioners Guide | Part 1: Introduction

Последнее обновление: 26 июня 2019 г.Время видео: 5 мин

Obtain a high-level overview of business and data strategy that a machine learning practitioner needs to know. Follow detailed instructions on how to install and validate one of the popular artificial intelligence frameworks, TensorFlow*, on the Intel® Xeon® Scalable platform.

Video Series: AI Practitioners Guide for Beginners | Part 2: Bare Metal

Последнее обновление: 26 июня 2019 г.Время видео: 4 мин

Learn the definition of a bare metal environment and how to train and test the single-node TensorFlow* framework and the multinode Intel® Xeon® Scalable platform in that environment.

Video Series: AI Practitioners Guide for Beginners | Part 3: Use AI Containers

Последнее обновление: 26 июня 2019 г.Время видео: 3 мин

Learn to use Docker* images with Intel® Optimization for TensorFlow* to deploy the TensorFlow framework on an Intel® Xeon® Scalable processor.

Video Series: AI Practitioners Guide for Beginners | Part 4: AI in the Cloud

Последнее обновление: 26 июня 2019 г.Время видео: 3 мин

Learn about deploying the TensorFlow* framework on the Intel® Xeon® Scalable processor via the cloud.

Video Series: AI Practitioners Guide for Beginners | Part 5: Conclusion

Последнее обновление: 26 июня 2019 г.Время видео: 1 мин

Recap what you learned in this series and find resources to help further your AI development.

wrnch* Democratizing Marker-Less Motion Capture

Опубликовано: 25 июня 2019 г.

wrnch* helps computers make connections between what they see and know, teaching them to understand human motion and body language.

Page icon

Intel® Innovators and Intel® Student Ambassadors at AI Summit Bangalore

Последнее обновление: 25 июня 2019 г.Время видео: 3 мин

The Intel® Student Ambassador and Intel® Software Innovator summit was held in Bangalore in June. Twelve student ambassadors and seventeen software innovators attended to train on Intel® tools and share AI ideas and projects. The three day agenda was action packed with a hands on workshop, fun activities, hackathon and a Gala Awards Night.

QuikFynd Advanced Data Search

Опубликовано: 25 июня 2019 г.Автор: Jason Powell

Tame fragmented data with QuikFynd advanced data search using the OpenVINO™ toolkit

ORBO* AI Harnessing the OpenVINO™ Toolkit to Revolutionize Image Upscaling

Опубликовано: 25 июня 2019 г.

The primary focus of Orbo has been to bring visual enhancements using a real-time, super resolution technology for video and images.

Optimizing Face Recognition Inference on Intel® Xeon® Scalable Processors

Опубликовано: 24 июня 2019 г.

A face recognition inference experiment using Intel® Xeon® scalable processors showing the AI power of face recognition applications.

Facilitating AI Power in Smart Retail Using Intel® Optimization for Caffe* on Intel® Xeon® Scalable Processors

Опубликовано: 24 июня 2019 г.

This article shows inference performance gains can be achieved using Intel® Optimization for Caffe* compared to open BVLC Caffe* on Intel® Xeon® scala

Intel logo

Graph Attention Networks Using Intel® Optimization for Tensorflow* on Intel® Xeon® Scalable Processors

Опубликовано: 21 июня 2019 г.

The adjacency matrix in real world graph is sparse. CPU systems without discrete hardware accelerators provide competitive training

AI & Security Innovations Help Developers Preserve Privacy While Delivering Insight

Опубликовано: 18 июня 2019 г.Автор: Jim Gordon

Homomorphic encryption opens up new possibilities by enabling computer calculations on encrypted information without decrypting it.

Model Serving with Analytics Zoo

Последнее обновление: 17 июня 2019 г.Время видео: 18 мин

The tutorial illustrates how to deploy a trained deep learning model with Analytics Zoo for inference or serving. Analytics Zoo is a unified analytics and AI platform, with Apache Spark*, BigDL, TensorFlow*, Keras.

TensorFlow* on Apache Spark* with Analytics Zoo

Последнее обновление: 14 июня 2019 г.Время видео: 15 мин

The tutorial illustrates TensorFlow* on Apache Spark* with Analytics Zoo. Analytics Zoo is a unified analytics and AI platform, with Apache Spark, BigDL, TensorFlow, Keras.

Page icon

Performance Boosting in Seldon

Опубликовано: 11 июня 2019 г.Автор: Dariusz T.

The Seldon Core open source machine learning deployment platform facilitates management of inference pipelines

Getting Started with the Intel® NCS2 on Linux*

Последнее обновление: 6 июня 2019 г.Время видео: 3 мин

How to get started with the Intel® Neural Compute Stick 2 (Intel® NCS2) on Linux.

Analytics Zoo Introduction

Последнее обновление: 4 июня 2019 г.Время видео: 24 мин

Analytics Zoo is a unified analytics and AI platform, with Apache Spark*, BigDL, Tensorflow*, Keras.

Use Analytics Zoo Keras style API to solve classification problem

Последнее обновление: 31 мая 2019 г.Время видео: 11 мин

The tutorial shows Analytics Zoo Keras style API for classification problem. Analytics Zoo is a unified analytics and AI platform, with Apache Spark*, BigDL, Tensorflow*, Keras.

Use Analytics Zoo Keras Style API to Solve Regression Problems

Последнее обновление: 22 мая 2019 г.Время видео: 13 мин

The tutorial shows Analytics Zoo Keras style API for regression problems. Analytics Zoo is a unified analytics and AI platform, with Apache Spark*, BigDL, TensorFlow*, Keras.

Windows® 10 May 2019 Update for Machine Learning Acceleration on Intel® Integrated Graphics

Опубликовано: 17 мая 2019 г.Автор: Gokul Tonpe

Intel's earlier post in May 2018 introduced the Windows ML API and the DirectML API implementation on Intel® hardware via the DirectX 12 DirectCompute

Intel® CPU Outperforms NVIDIA* GPU on ResNet-50 Deep Learning Inference

Опубликовано: 13 мая 2019 г.Автор: Haihao Shen

Intel Xeon processor outperforms NVidia's best GPUs on ResNet-50.

Introduction to Natural Language Processing (NLP) Architect

Последнее обновление: 13 мая 2019 г.Время видео: 52 мин

This webinar focuses on introducing the audience to Natural Language Processing (NLP) Architect, a Python* library from the Intel® AI Lab for exploring the state-of-the-art deep learning topologies.

Introduction to the Intel® Distribution of OpenVINO™ Toolkit and Windows Machine Learning*

Последнее обновление: 13 мая 2019 г.Время видео: 1 мин

In this webinar you will learn how real-time inference on the PC for visual workloads such as object detection, recognition, and tracking are now easily developed with Intel® Distribution of OpenVINO™ Toolkit and Windows Machine Learning* API.

Страницы