Создание искусственного интеллекта для игр (часть 1)

Автор: Дональд Кихо (Donald Kehoe)

За несколько последних десятилетий отрасль компьютерных игр проделала гигантский путь. Все началось с простейших игр, таких как Pong* и Pac-Man*, благодаря которым игроки могли на короткое время забыть о реальном мире. Современные мощнейшие игровые проекты, такие как World of Warcraft* и Call of Duty 4*, являются весьма серьезным хобби для игроков. По данным Ассоциации развлекательного программного обеспечения (ESA), современные геймеры обладают в среднем 13-летним опытом компьютерных игр, они привыкли к тому, что новые игры становятся все более сложными, увлекательными и умными. Для разработчиков основная проблема состоит в том, что необходимо создавать все более захватывающие игры. Для решения этой задачи применяется и постоянно совершенствующийся управляемый компьютером искусственный интеллект (ИИ). Но создание хорошего искусственного игрового партнера, который способен приспосабливаться к действиям игрока, играть на высоком уровне и побуждать игрока совершенствоваться, — весьма непростая задача. Эта статья открывает серию из четырех статей, в которой описываются важнейшие принципы ИИ и способы оптимизации для использования всех возможностей современных многоядерных процессоров.

Часть 1. Проектирование и реализация

Что такое ИИ для игр?

На простейшем уровне «искусственный интеллект» заключается в моделировании или имитации поведения других игроков или объектов (то есть всех элементов игры, которые могут действовать или с которыми может действовать игрок, — от ракет до аптечек), представляемых искусственным интеллектом. Основной принцип состоит в том, что это поведение имитируется. Другими словами, ИИ для игр является более «искусственным», нежели «интеллектом». Система ИИ может быть крайне проста и представлять собой набор правил или же может быть довольно сложной и выполнять роль командующего армии противника, с которой предстоит сражаться игроку.

В чем ИИ для игр отличается от традиционного представления об ИИ

В традиционных исследованиях в области ИИ целью является создание настоящего интеллекта, или даже искусственного разума, хотя и искусственными средствами. В таких проектах, как Kismet*, Массачусетского технологического института (МТИ) делается попытка создать ИИ, способный к обучению и к социальному взаимодействию, к проявлению эмоций. На момент написания этой статьи в МТИ ведется работа над созданием ИИ, располагающего уровнем способностей маленького ребенка, и результаты этой работы весьма перспективны.

С точки зрения игр подлинный ИИ далеко выходит за рамки требований развлекательного программного проекта. В играх такая мощь не нужна. Игровой ИИ не должен быть наделен чувствами и самосознанием (честно говоря, и очень хорошо, что это именно так!), ему нет необходимости обучаться чему-либо за пределами рамок игрового процесса. Подлинная цель ИИ в играх состоит в имитации разумного поведения и в предоставлении игроку убедительной, правдоподобной задачи, которую игрок сможет решить.

Назначение ИИ в играх

ИИ может исполнять различные роли в играх. Это может быть общий набор правил, определяющих поведение объектов в игровом мире. Также к ИИ следует относить и события с заранее написанным сценарием. Например, в игре F.E.A.R* маленькая страшная девочка, приводящая игроков в ужас и предвещающая события из будущего, является событием с заранее написанными сценариями. Большинству пользователей, размышляющих об ИИ и играх, приходят на ум управляемые компьютером персонажи в многопользовательских играх. Но все эти разнообразные роли могут быть исполнены одним актером — искусственным интеллектом.

Рисунок 1. Игра F.E.A.R. (Vivendi Universal*) с использованием событий с заранее написанным сценарием в качестве ИИ

Что нужно для ИИ в играх

В зависимости от характера и роли ИИ в игре требования к ресурсам могут быть самыми незначительными. Чем сложнее система, тем больше ресурсов необходимо для ИИ. На базовом уровне требуется всего лишь время работы процессора для вычисления действий ИИ. В более сложных системах требуются какие-либо средства анализа среды ИИ, регистрации действий игрока и оценки успешности прежних действий.

Принятие решений

Основным принципом, лежащим в основе работы ИИ, является принятие решений. Для выбора при принятии решений система должна влиять на объекты с помощью системы ИИ. При этом такое воздействие может быть организовано в виде «вещания ИИ» или «обращений объектов».

В системах с «вещанием ИИ» система ИИ обычно изолирована в виде отдельного элемента игровой архитектуры. Такая стратегия зачастую принимает форму отдельного потока или нескольких потоков, в которых ИИ вычисляет наилучшее решение для заданных параметров игры. Когда ИИ принимает решение, это решение затем передается всем участвующим объектам. Такой подход лучше всего работает в стратегиях реального времени, где ИИ анализирует общий ход событий во всей игре.

Системы с «обращениями объектов» лучше подходят для игр с простыми объектами. В таких играх объекты обращаются к системе ИИ каждый раз, когда объект «думает» или обновляет себя. Такой подход отлично подходит для систем с большим количеством объектов, которым не нужно «думать» слишком часто, например в шутерах. Такая система также может воспользоваться преимуществами многопоточной архитектуры, но для нее требуется более сложное планирование (подробные сведения см. в статье Ориона Гранатира Многопоточный ИИ).

Базовое восприятие

Чтобы искусственный интеллект мог принимать осмысленные решения, ему необходимо каким-либо образом воспринимать среду, в которой он находится. В простых системах такое восприятие может ограничиваться простой проверкой положения объекта игрока. В более сложных системах требуется определять основные характеристики и свойства игрового мира, например возможные маршруты для передвижения, наличие естественных укрытий на местности, области конфликтов.
При этом разработчикам необходимо придумывать способ выявления и определения основных свойств игрового мира, важных для системы ИИ. Например, укрытия на местности могут быть заранее определены дизайнерами уровней или заранее вычислены при загрузке или компиляции карты уровня. Некоторые элементы необходимо вычислять на лету, например карты конфликтов и ближайшие угрозы.

Системы на основе правил

Простейшей формой искусственного интеллекта является система на основе правил. Такая система дальше всего стоит от настоящего искусственного интеллекта. Набор заранее заданных алгоритмов определяет поведение игровых объектов. С учетом разнообразия действий конечный результат может быть неявной поведенческой системой, хотя такая система на самом деле вовсе не будет «интеллектуальной».
Хорошим примером системы на основе правил является работа дилера (крупье) при игре в блэкджек, будь то компьютерная игра или настоящий блэкджек. У дилера есть простое правило, которое он всегда соблюдает: он обязан брать карты до тех пор, пока не достигнет 17 очков (и обязан остановиться, набрав 17 очков или более). С точки зрения среднего игрока, ситуация выглядит так, как будто дилер намеренно и агрессивно играет против него. Поэтому у игрока складывается представление, что против него играет более опытный соперник, чем на самом деле (если в казино не объявлены другие правила, по которым играют дилеры).

Классическим игровым приложением, где используется такая система, является Pac-Man. Игрока преследуют четыре привидения. Каждое привидение действует, подчиняясь простому набору правил. Одно привидение всегда поворачивает влево, другое всегда поворачивает вправо, третье поворачивает в произвольном направлении, а четвертое всегда поворачивает в сторону игрока. Если бы на экране привидения появлялись по одному, их поведение было бы очень легко определить и игрок смог бы без труда от них спасаться. Но поскольку появляется сразу группа из четырех привидений, их движения кажутся сложным и скоординированным выслеживанием игрока. На самом же деле только последнее из четырех привидений учитывает расположение игрока.


Рисунок 2. Наглядное представление набора правил, управляющих привидениями в игре Pac-Man, где стрелки представляют принимаемые «решения»

Из этого примера следует, что правила не обязательно должны быть жестко заданными. Они могут основываться на воспринимаемом состоянии (как у последнего приведения) или на редактируемых параметрах объектов. Такие переменные, как уровень агрессии, уровень смелости, дальность обзора и скорость мышления, позволяют получить более разнообразное поведение объектов даже при использовании систем на основе правил. Системы на основе правил являются простейшей структурой ИИ. В более сложных и разумных системах в качестве основы используются последовательности условных правил. В тактических играх правила управляют выбором используемой тактики. В стратегических играх правила управляют последовательностью строящихся объектов и реакцией на конфликты. Системы на основе правил являются фундаментом ИИ.

Конечные автоматы в качестве ИИ

Конечный автомат (машина с конечным числом состояний) является способом моделирования и реализации объекта, обладающего различными состояниями в течение своей жизни. Каждое «состояние» может представлять физические условия, в которых находится объект, или набор эмоций, выражаемых объектом. В этом примере эмоциональные состояния не имеют никакого отношения к эмоциям ИИ, они относятся к заранее заданным поведенческим моделям, вписывающимся в контекст игры.

Вот распространенные примеры состояния системы ИИ в игре с элементами скрытных действий.

Рисунок 3. Схема состояний в типичном конечном автомате, стрелки представляют возможные изменения состояния

  • Бездействие. В этом состоянии объект просто пассивно стоит или ходит по заданному маршруту. Уровень восприятия низок. Объект редко проверяет наличие звуков, издаваемых игроком. Только если объект атакован или «видит» игрока прямо перед собой, состояние объекта изменяется на более высокий уровень восприятия.
  • Настороженность. Объект ведет активный поиск посторонних. Он часто вслушивается, стараясь услышать игрока, поле обзора дальше и шире, чем при бездействии. Объект перейдет в состояние заинтересованности, если заметит что­то необычное (что-то, требующее проверки), например открытые двери, тела в бессознательном состоянии, гильзы от патронов.
  • Заинтересованность. Объект знает, что что-то происходит. Для демонстрации такого поведения объект покидает свой обычный пост или маршрут движения и перемещается в область интереса, например к упомянутым выше открытым дверям или лежащим телам. Если при этом объект увидит игрока, он перейдет в состояние тревоги.
  • Тревога. В этом состоянии объект уже заметил игрока и выполняет действия, направленные на то, чтобы преследовать и уничтожить игрока: выход на дистанцию атаки, оповещение других стражников, включение сигнала тревоги, поиск укрытия. Когда противник находится в дальности досягаемости объекта, объект переходит в состояние агрессии.
  • Агрессия. В этом состоянии объект начинает бой с игроком. Объект атакует игрока в любое время, когда это возможно, и старается укрыться в перерывах между атаками (если требуется перезарядить оружие или дать ему остыть). Объект выходит из этого состояния, только если игрок уничтожен (возврат в обычное состояние), игрок выходит за пределы области поражения (возврат в состояние тревоги) или если погибает сам объект (переход в состояние смерти). Если у объекта остается мало здоровья, он может переключиться в состояние бегства (в зависимости от уровня смелости конкретного объекта).
  • Бегство. В этом состоянии объект пытается выйти из боя. В зависимости от игры у объекта может быть помимо основной цели (поиск и уничтожение игрока) еще и дополнительная цель — поиск аптечек для восстановления здоровья или выход из области игры. Обнаружив аптечку, объект может вернуться в состояние тревоги и возобновить бой. Объект, «выходящий» из области игры, просто удаляется.
  • Смерть. В некоторых играх состояние смерти отличается от полного бездействия. При гибели объект может, к примеру, закричать, оповестив находящиеся рядом объекты, или перейти в бессознательное состояние, в котором еще может прийти на помощь врач (в этом случае объект вернется в состояние тревоги).

Существуют как минимум два простых способа реализации конечного автомата с системой объектов. Первый способ: каждое состояние является переменной, которую можно проверить (зачастую это делается с помощью громоздких инструкций переключения). Второй способ: использовать указатели функций (на языке С) или виртуальные функции (С++ и другие объектно-ориентированные языки программирования).

Адаптивный ИИ

В предыдущих разделах описываются методы проектирования систем интеллекта, вписывающихся в заранее заданные игровые события. Для большинства игр такое решение вполне применимо, если все спроектированные модели проработаны достаточно полно и существует четкое понимание целей, которые преследуют управляемые искусственным интеллектом объекты. Если же в игре требуется большее разнообразие, если у игрока должен быть более сильный и динамичный противник, то ИИ должен обладать способностью развиваться, приспосабливаться и адаптироваться.

Адаптивный ИИ часто используется в боевых и стратегических играх со сложной механикой и огромным количеством разнообразных возможностей в игровом процессе. Если требуется сделать игру сложной и захватывающей, такой, чтобы игрок не смог рано или поздно догадаться о единой оптимальной стратегии для победы над компьютером, ИИ должен уметь обучаться и приспосабливаться.

Предсказание

Способность точно предугадывать следующий ход противника крайне важна для адаптивной системы. Для выбора следующего действия можно использовать различные методы, например распознавание закономерностей прошлых ходов (подробнее описывается в последующей статье) или случайные догадки.

Одним из простейших способов адаптации является отслеживание решений, принятых ранее, и оценка их успешности. Система ИИ регистрирует выбор, сделанный игроком в прошлом. Все принятые в прошлом решения нужно каким-то образом оценивать (например, в боевых играх в качестве меры успешности можно использовать полученное или утраченное преимущество, потерянное здоровье или преимущество по времени). Можно собирать дополнительные сведения о ситуации, чтобы образовать контекст для решений, например относительный уровень здоровья, прежние действия и положение на уровне (люди играют по-другому, когда им уже некуда отступать).

Можно оценивать историю для определения успешности прежних действий и принятия решения о том, нужно ли изменять тактику. До создания списка прежних действий объект может использовать стандартную тактику или действовать произвольно. Эту систему можно увязать с системами на основе правил и с различными состояниями.

В тактической игре история прошлых боев поможет выбрать наилучшую тактику для использования против команды игрока, например ИИ может играть от обороны, выбрать наступательную тактику, атаковать всеми силами невзирая на потери или же избрать сбалансированный подход. В стратегической игре можно для каждого игрока подбирать оптимальный набор различных боевых единиц в армии. В играх, где ИИ управляет персонажами, поддерживающими игрока, адаптивный ИИ сможет лучше приспособиться к естественному стилю игрока, изучая его действия.

Заключение

Искусственный интеллект — многогранная и сложная область для исследований. ИИ в играх может принимать разные формы в зависимости от потребностей создаваемой игры — от простых наборов правил для управляемых компьютером объектов до более совершенных адаптивных систем. Применение принципов ИИ в играх необходимо для повышения правдоподобности виртуальных персонажей, созданных в электронной развлекательной программе, но эта задача вполне решаема. В следующей статье в этой серии мы поговорим о проблемах, с которыми сталкивается ИИ при восприятии и действиях в сложной среде, и о решении таких проблем.

Об авторе

Дональд «DJ» Кихо: Дональд Кихо работает преподавателем программы информационных технологий в Технологическом институте Нью-Джерси и специализируется на разработке игр. Дональд преподает множество курсов по этой программе, включая архитектуру игр, программирование и создание уровней, а также курсы по интеграции трехмерной графики с играми. В настоящее время Дональд работает над получением степени доктора наук в области биомедицинских технологий, где технологии игр и виртуальной реальности применяются для повышения эффективности нервно-мышечной реабилитации.

Дополнительные сведения об оптимизации компиляторов см. в нашем уведомлении об оптимизации.

Для получения подробной информации о возможностях оптимизации компилятора обратитесь к нашему Уведомлению об оптимизации.
ВложениеРазмер
Иконка изображения 1.png81.48 КБ
Возможность комментирования русскоязычного контента была отключена. Узнать подробнее.