?lanhe

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix.

Syntax

val = clanhe( norm, uplo, n, a, lda, work )

val = zlanhe( norm, uplo, n, a, lda, work )

C:

float LAPACKE_clanhe (int matrix_layout, char norm, char uplo, lapack_int n, const lapack_complex_float * a, lapack_int lda);

double LAPACKE_zlanhe (int matrix_layout, char norm, char uplo, lapack_int n, const lapack_complex_double * a, lapack_int lda);

Include Files

  • Fortran: mkl.fi
  • C: mkl.h

Description

The function ?lanhe returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix A.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.

norm

CHARACTER*1. Specifies the value to be returned by the routine:

= 'M' or 'm': val = max(abs(Aij)), largest absolute value of the matrix A.

= '1' or 'O' or 'o': val = norm1(A), 1-norm of the matrix A (maximum column sum),

= 'I' or 'i': val = normI(A), infinity norm of the matrix A (maximum row sum),

= 'F', 'f', 'E' or 'e': val = normF(A), Frobenius norm of the matrix A (square root of sum of squares).

uplo

CHARACTER*1.

Specifies whether the upper or lower triangular part of the Hermitian matrix A is to be referenced.

= 'U': Upper triangular part of A is referenced.

= 'L': Lower triangular part of A is referenced

n

INTEGER. The order of the matrix A. n 0. When n = 0, ?lanhe is set to zero.

a

COMPLEX for clanhe.

DOUBLE COMPLEX for zlanhe.

Array, DIMENSION (lda,n). The Hermitian matrix A.

If uplo = 'U', the leading n-by-n upper triangular part of a contains the upper triangular part of the matrix A, and the strictly lower triangular part of a is not referenced.

If uplo = 'L', the leading n-by-n lower triangular part of a contains the lower triangular part of the matrix A, and the strictly upper triangular part of a is not referenced.

lda

INTEGER. The leading dimension of the array a.

lda max(n,1).

work

REAL for clanhe.

DOUBLE PRECISION for zlanhe.

Workspace array, DIMENSION (max(1,lwork)), where

lwork n when norm = 'I' or '1' or 'O'; otherwise, work is not referenced.

Output Parameters

val

REAL for clanhe.

DOUBLE PRECISION for zlanhe.

Value returned by the function.

Пожалуйста, обратитесь к странице Уведомление об оптимизации для более подробной информации относительно производительности и оптимизации в программных продуктах компании Intel.