Recipe: Building and Running MILC on Intel® Xeon® Processors and Intel® Xeon Phi™ Processors

MILC software represents a set of codes written by the MIMD Lattice Computation collaboration used to study quantum chromodynamics, the theory of the strong interactions of subatomic physics. This article provides instructions for code access, build, and run directions for the “ks_imp_rhmc” application on Intel® Xeon® processors and Intel® Xeon Phi™ processors.
Автор: Smahane D. (Intel) Последнее обновление: 01.03.2017 - 12:59

Installing Intel® Performance Libraries and Intel® Distribution for Python* via popular Linux* package managers

Select Version for Download Instructions

Developers can now easily access the following Intel® Software Development Tools through several Linux* package managers at no cost:

Автор: Gergana S. (Intel) Последнее обновление: 01.03.2017 - 12:44
Оперативность отобржения страницы назначения

High Performance Computing (HPC) Webinars

Автор: админ Последнее обновление: 01.03.2017 - 12:36

High-Performance Machine Learning and Data Science with Julia and Intel® Math Kernel Library

Find out how Julia is fast becoming a language of choice for high-performance and high-scalability applications in Machine Learning and Deep Learning.
Автор: админ Последнее обновление: 01.03.2017 - 12:33

CPUs, GPUs, FPGAs: Managing the Alphabet Soup with Intel® Threading Building Blocks

Find out how Intel® TBB can help you address the multi-core performance challenges of today’s heterogeneous compute landscape. Easily.
Автор: админ Последнее обновление: 01.03.2017 - 12:31

Accelerate Application Performance with OpenMP* and SIMD Parallelism

Using the OpenMP* programming model, we’ll work on and optimize sample multi-threaded code, and illustrate best practices for efficiency and speed ups.
Автор: админ Последнее обновление: 01.03.2017 - 12:30

Parallel STL: Boosting Application Performance with Standard C++ Algorithms

Intel engineers will describe implementation of Parallel STL—the C++ Standard Template Library—based on OpenMP* pragmas & the Intel® TBB library.
Автор: админ Последнее обновление: 01.03.2017 - 12:28

HPC Applications Need High-Performance Analysis

Explore HPC performance characterization analysis to gain actionable insight into how efficiently compute-intensive applications use system resources.
Автор: админ Последнее обновление: 01.03.2017 - 12:26

Snapshot Your Application Performance and Improve!

We’ll show a workflow for finding bottlenecks and demonstrate an effective method for implementing improvements … no complex software necessary.
Автор: админ Последнее обновление: 01.03.2017 - 12:25

Healthy, Happy Performing Clusters with Intel® Cluster Checker 2017

Get expert tips for using Intel® Cluster Checker to verify system functionality.
Автор: админ Последнее обновление: 01.03.2017 - 12:23
Для получения подробной информации о возможностях оптимизации компилятора обратитесь к нашему Уведомлению об оптимизации.