Фильтры

Article

Vectorizing Loops with Calls to User-Defined External Functions

Introduction

Автор: Anoop M. (Intel) Последнее обновление: 12.12.2018 - 18:00
Блоги

The switch() statement isn't really evil, right?

In my current position, I work to optimize and parallelize codes that deal with genomic data, e.g., DNA, RNA, proteins, etc.

Автор: Clay B. (Blackbelt) Последнее обновление: 04.07.2019 - 10:46
Article

Putting Your Data and Code in Order: Data and layout - Part 2

Apply the concepts of parallelism and distributed memory computing to your code to improve software performance. This paper expands on concepts discussed in Part 1, to consider parallelism, both vectorization (single instruction multiple data SIMD) as well as shared memory parallelism (threading), and distributed memory computing.
Автор: David M. Последнее обновление: 06.07.2019 - 16:40
Article

Peel the Onion (Optimization Techniques)

This paper is a more formal response to an Intel® Developer Zone forum posting. See: (https://software.intel.com/en-us/forums/intel-moderncode-for-parallel-architectures/topic/590710).
Автор: jimdempseyatthecove (Blackbelt) Последнее обновление: 12.12.2018 - 18:00
Article

Приводим данные и код в порядок: данные и разметка, часть 2

In this pair of articles on performance and memory covers basic concepts to provide guidance to developers seeking to improve software performance. This paper expands on concepts discussed in Part 1, to consider parallelism, both vectorization (single instruction multiple data SIMD) as well as shared memory parallelism (threading), and distributed memory computing.
Автор: David M. Последнее обновление: 06.07.2019 - 16:40
Блоги

Reduce Boilerplate Code in Parallelized Loops with C++11 Lambda Expressions

Parallelize loops with Intel® Threading Building Blocks using Intel® C++ Compiler for lambda expressions.
Автор: gaston-hillar (Blackbelt) Последнее обновление: 12.12.2018 - 18:00
Article

Recognize and Measure Vectorization Performance

Get a background on vectorization and learn different techniques to evaluate its effectiveness.
Автор: David M. Последнее обновление: 06.07.2019 - 16:40
Article

Чистим лук (но не плачем): методики оптимизации

Эта статья представляет собой формализованный ответ на публикацию на форуме Intel® Developer Zone. См.: (https://software.intel.com/en-us/forums/intel-moderncode-for-parallel-architectures/topic/590710).
Автор: Последнее обновление: 12.12.2018 - 18:00
Article

整理您的数据和代码: 数据和布局 - 第 2 部分

Apply the concepts of parallelism and distributed memory computing to your code to improve software performance. This paper expands on concepts discussed in Part 1, to consider parallelism, both vectorization (single instruction multiple data SIMD) as well as shared memory parallelism (threading), and distributed memory computing.
Автор: David M. Последнее обновление: 06.07.2019 - 16:40
Article

Implementing a Masked SVML-like Function Explicitly in User-Defined Way

The Intel® Compiler provides SIMD intrinsics APIs for short vector math library (SVML) and starting with Intel® Advanced Vector Extensions

Автор: Последнее обновление: 16.07.2019 - 08:37