Фильтры

Article

Sierpiński Carpet in OpenCL* 2.0

We demonstrate how to create a Sierpinski Carpet in OpenCL* 2.0

Автор: Robert I. (Intel) Последнее обновление: 31.05.2019 - 14:20
Блоги

opencl_node overview

Introduction
Автор: Alex (Intel) Последнее обновление: 30.05.2018 - 07:08
Article

Using Intel® MPI Library 5.1 on Microsoft* Windows* with Microsoft* MPI based applications

Why it is needed?
Автор: Dmitry S. (Intel) Последнее обновление: 12.12.2018 - 20:11
Блоги

Reduce Boilerplate Code in Parallelized Loops with C++11 Lambda Expressions

Parallelize loops with Intel® Threading Building Blocks using Intel® C++ Compiler for lambda expressions.
Автор: gaston-hillar (Blackbelt) Последнее обновление: 12.12.2018 - 18:00
Article

Recognize and Measure Vectorization Performance

Get a background on vectorization and learn different techniques to evaluate its effectiveness.
Автор: David M. Последнее обновление: 06.07.2019 - 16:40
Article

Offload Computations from Servers with an Intel® Xeon Phi™ Processor

Learn how to use Offload over Fabric software for a server migration path.
Автор: Jan Z. (Intel) Последнее обновление: 06.07.2019 - 16:40
Блоги

Debug Intel® Transactional Synchronization Extensions

If printf or fprintf functions cause transaction aborts, use Intel® Processor Trace as a work-around.
Автор: Roman Dementiev (Intel) Последнее обновление: 04.07.2019 - 17:00
Article

Accelerate Your NVMe Drives with SPDK

The Storage Performance Development Kit (SPDK) is an open source set of tools and libraries hosted on GitHub that helps you create high-performance and scalable storage applications. This tutorial focuses on the userspace NVMe driver provided by SPDK and illustrates a Hello World example.
Автор: Steven B. (Intel) Последнее обновление: 05.07.2019 - 19:40
Блоги

Intel® Xeon Phi™ Product Family x200 (KNL) User mode (ring 3) MONITOR and MWAIT

The Intel® Xeon Phi™ Product Family x200 series processors (formerly known as “Knights Landing”) contain a model specific feature, which allows the MONITOR and MWAIT

Автор: Cownie, James H (Intel) Последнее обновление: 14.06.2019 - 15:00
Article

面向英特尔® 架构优化的 Caffe*:使用现代代码技巧

This paper demonstrates a special version of Caffe* — a deep learning framework originally developed by the Berkeley Vision and Learning Center (BVLC) — that is optimized for Intel® architecture.
Автор: Последнее обновление: 06.07.2019 - 16:40