Фильтры

Article

Caffe* Scoring Optimization for Intel® Xeon® Processor E5 Series

    In continued efforts to optimize Deep Learning workloads on Intel® architecture, our engineers explore various paths leading to the maximum performance.

Автор: Gennady F. (Blackbelt) Последнее обновление: 21.03.2019 - 12:28
Article

Performance Comparison of OpenBLAS* and Intel® Math Kernel Library in R

Today, scientific and business industries collect large amounts of data, analyze them, and make decisions based on the outcome of the analysis. This paper compares the performance of Basic Linear Algebra Subprograms (BLAS), libraries OpenBLAS, and the Intel® Math Kernel Library (Intel® MKL).
Автор: Nguyen, Khang T (Intel) Последнее обновление: 06.07.2019 - 16:40
Article

Baidu Deep Neural Network Click-Through Rate on Intel® Xeon® Processors E5 v4

How do new web sites selling products or services appear at the top of the search list? The key is to use the right keywords that people might use to search for their products or services. Baidu1 is the most popular search engine in China. Ad companies can pay Baidu so that their ads appear at the top of the search list.
Автор: Nguyen, Khang T (Intel) Последнее обновление: 05.07.2019 - 14:36
Article

Scale-Up Implementation of a Transportation Network Using Ant Colony Optimization (ACO)

In this article an OpenMP* based implementation of the Ant Colony Optimization algorithm was analyzed for bottlenecks with Intel® VTune™ Amplifier XE 2016 together with improvements using hybrid MPI-OpenMP and Intel® Threading Building Blocks were introduced to achieve efficient scaling across a four-socket Intel® Xeon® processor E7-8890 v4 processor-based system.
Автор: Sunny G. (Intel) Последнее обновление: 05.07.2019 - 19:10
Блоги

How Intel® Xeon Phi™ Processors Benefit Machine Learning/Deep Learning Apps and Frameworks

Machine learning can take very large amounts of data to predict possible outcomes with a high degree of accuracy. The second-generation Intel® Xeon Phi processor has the processor performance and memory bandwidth to address complex machine learning applications.
Автор: Pradeep Dubey (Intel) Последнее обновление: 21.03.2019 - 12:40
Article

Caffe* Optimized for Intel® Architecture: Applying Modern Code Techniques

This paper demonstrates a special version of Caffe* — a deep learning framework originally developed by the Berkeley Vision and Learning Center (BVLC) — that is optimized for Intel® architecture.
Автор: Последнее обновление: 06.07.2019 - 16:40
Article

Improving the Performance of Principal Component Analysis with Intel® Data Analytics Acceleration Library

This article discusses an unsupervised machine-learning algorithm called principal component analysis (PCA) that can be used to simplify the data. It also describes how Intel® Data Analytics Acceleration Library (Intel® DAAL) helps optimize this algorithm to improve the performance when running it on systems equipped with Intel® Xeon® processors.
Автор: Nguyen, Khang T (Intel) Последнее обновление: 05.07.2019 - 14:57
Article

R 语言中的OpenBLAS*和英特尔® 数学核心函数库的性能比较

Today, scientific and business industries collect large amounts of data, analyze them, and make decisions based on the outcome of the analysis. This paper compares the performance of Basic Linear Algebra Subprograms (BLAS), libraries OpenBLAS, and the Intel® Math Kernel Library (Intel® MKL).
Автор: Nguyen, Khang T (Intel) Последнее обновление: 06.07.2019 - 16:30
Article

针对英特尔® 至强™ 处理器 E5 系列的 Caffe* 评分优化

为了不断优化英特尔® 架构的深度学习工作负载,我们的工程师探索不同的路径,以达到最高性能。

Автор: Gennady F. (Blackbelt) Последнее обновление: 21.03.2019 - 12:28
Article

在英特尔® 数学核心函数库中引入 DNN 基元

    深度神经网络 (DNN) 处于机器学习领域的前沿。这些算法在 20 世纪 90 年代后期得到了行业的广泛采用,最初应用于诸如银行支票手写识别等任务。深度神经网络在这一任务领域已得到广泛运用,达到甚至超过了人类能力。如今,DNN 已用于图像识别、视频和自然语言处理以及解决复杂的视觉理解问题,如自主驾驶等。DNN 在计算资源及其必须处理的数据量方面要求非常苛刻。

Автор: Vadim Pirogov (Intel) Последнее обновление: 21.03.2019 - 12:08