Фильтры

Блоги

Announcing the Intel® Distribution for Python* Beta

The Beta for Intel® Distribution for Python* 2017 has been available for 1 month and I wanted to share some of our experiences.

Автор: Robert C. (Intel) Последнее обновление: 31.12.2018 - 16:12
Article

Using Intel® Data Analytics Acceleration Library to Improve the Performance of Naïve Bayes Algorithm in Python*

This article discusses machine learning and describes a machine learning method/algorithm called Naïve Bayes (NB) [2]. It also describes how to use Intel® Data Analytics Acceleration Library (Intel® DAAL) [3] to improve the performance of an NB algorithm.
Автор: Nguyen, Khang T (Intel) Последнее обновление: 06.07.2019 - 16:40
Article

Caffe* Optimized for Intel® Architecture: Applying Modern Code Techniques

This paper demonstrates a special version of Caffe* — a deep learning framework originally developed by the Berkeley Vision and Learning Center (BVLC) — that is optimized for Intel® architecture.
Автор: Последнее обновление: 06.07.2019 - 16:40
Article

Introducing DNN primitives in Intel® Math Kernel Library

Please notes: Deep Neural Network(DNN) component in MKL is deprecated since intel® MKL ​2019 and will be removed in the next intel® MKL Release.

Автор: Vadim Pirogov (Intel) Последнее обновление: 21.03.2019 - 12:00
Article

面向英特尔® 架构优化的 Caffe*:使用现代代码技巧

This paper demonstrates a special version of Caffe* — a deep learning framework originally developed by the Berkeley Vision and Learning Center (BVLC) — that is optimized for Intel® architecture.
Автор: Последнее обновление: 06.07.2019 - 16:40
Article

利用英特尔® 数据分析加速库提高 Python* 语言中朴素贝叶斯算法的性能

This article discusses machine learning and describes a machine learning method/algorithm called Naïve Bayes (NB) [2]. It also describes how to use Intel® Data Analytics Acceleration Library (Intel® DAAL) [3] to improve the performance of an NB algorithm.
Автор: Nguyen, Khang T (Intel) Последнее обновление: 06.07.2019 - 16:30
Article

在英特尔® 数学核心函数库中引入 DNN 基元

    深度神经网络 (DNN) 处于机器学习领域的前沿。这些算法在 20 世纪 90 年代后期得到了行业的广泛采用,最初应用于诸如银行支票手写识别等任务。深度神经网络在这一任务领域已得到广泛运用,达到甚至超过了人类能力。如今,DNN 已用于图像识别、视频和自然语言处理以及解决复杂的视觉理解问题,如自主驾驶等。DNN 在计算资源及其必须处理的数据量方面要求非常苛刻。

Автор: Vadim Pirogov (Intel) Последнее обновление: 21.03.2019 - 12:08
Article

Vector API Developer Program for Java* Software

This article introduces Vector API to Java* developers. It shows how to start using the API in Java programs, and provides examples of vector algorithms. It provides step-by-step details on how to build the Vector API and build Java applications using it. It provides the location for downloadable binaries for Project Panama binaries.
Автор: Neil V. (Intel) Последнее обновление: 06.07.2019 - 16:30
Article

Maximize TensorFlow* Performance on CPU: Considerations and Recommendations for Inference Workloads

This article will describe performance considerations for CPU inference using Intel® Optimization for TensorFlow*
Автор: Nathan Greeneltch (Intel) Последнее обновление: 31.07.2019 - 12:11
Article

最大限度提升 CPU 上的 TensorFlow* 性能:推理工作负载的注意事项和建议

本文将介绍使用面向 TensorFlow 的英特尔® 优化* 进行 CPU 推理的性能注意事项
Автор: Nathan Greeneltch (Intel) Последнее обновление: 09.08.2019 - 02:02