Фильтры

Article

面向英特尔® 架构优化的 Caffe*:使用现代代码技巧

This paper demonstrates a special version of Caffe* — a deep learning framework originally developed by the Berkeley Vision and Learning Center (BVLC) — that is optimized for Intel® architecture.
Автор: Последнее обновление: 06.07.2019 - 16:40
Article

利用英特尔® 数据分析加速库提高 Python* 语言中朴素贝叶斯算法的性能

This article discusses machine learning and describes a machine learning method/algorithm called Naïve Bayes (NB) [2]. It also describes how to use Intel® Data Analytics Acceleration Library (Intel® DAAL) [3] to improve the performance of an NB algorithm.
Автор: Nguyen, Khang T (Intel) Последнее обновление: 06.07.2019 - 16:30
Article

在英特尔® 数学核心函数库中引入 DNN 基元

    深度神经网络 (DNN) 处于机器学习领域的前沿。这些算法在 20 世纪 90 年代后期得到了行业的广泛采用,最初应用于诸如银行支票手写识别等任务。深度神经网络在这一任务领域已得到广泛运用,达到甚至超过了人类能力。如今,DNN 已用于图像识别、视频和自然语言处理以及解决复杂的视觉理解问题,如自主驾驶等。DNN 在计算资源及其必须处理的数据量方面要求非常苛刻。

Автор: Vadim Pirogov (Intel) Последнее обновление: 21.03.2019 - 12:08
Article

面向 GEMM 引入新封装的 API

1     面向 GEMM 引入新封装的 API
Автор: Gennady F. (Blackbelt) Последнее обновление: 05.07.2019 - 19:03
Article

最大限度提升 CPU 上的 TensorFlow* 性能:推理工作负载的注意事项和建议

本文将介绍使用面向 TensorFlow 的英特尔® 优化* 进行 CPU 推理的性能注意事项
Автор: Nathan Greeneltch (Intel) Последнее обновление: 09.08.2019 - 02:02