Фильтры

Article

Loop Modifications to Enhance Data-Parallel Performance

When confronted with nested loops, the granularity of the computations that are assigned to threads will directly affect performance. Loop transformations such as splitting and merging nested loops can make parallelization easier and more productive.
Автор: админ Последнее обновление: 05.07.2019 - 14:47
Article

Granularity and Parallel Performance

One key to attaining good parallel performance is choosing the right granularity for the application. Granularity is the amount of real work in the parallel task. If granularity is too fine, then performance can suffer from communication overhead.
Автор: админ Последнее обновление: 05.07.2019 - 19:52
Article

OpenMP* and the Intel® IPP Library

How to configure OpenMP in the Intel IPP library to maximize multi-threaded performance of the Intel IPP primitives.
Автор: Последнее обновление: 31.07.2019 - 14:30
Article

Optimize Data Structures and Memory Access Patterns to Improve Data Locality

GOptimize Data Structures and Memory Access Patterns to I

Автор: Victoria Gromova (Intel) Последнее обновление: 05.07.2019 - 19:47
Article

The Importance of Vectorization for Intel Microarchitectures (Fortran Example)

Reference Link and Download

Intel Vectorization Tools

Автор: Martyn Corden (Intel) Последнее обновление: 03.07.2019 - 20:00
Article

Improving Averaging Filter Performance Using Intel® Cilk™ Plus

Intel® Cilk™ Plus is an extension to the C and C++ languages to support data and task parallelism.  It provides three new keywords to i

Автор: Anoop M. (Intel) Последнее обновление: 12.12.2018 - 18:00
Article

Vectorizing Loops with Calls to User-Defined External Functions

Introduction

Автор: Anoop M. (Intel) Последнее обновление: 12.12.2018 - 18:00
Article

循环修改增强数据并行性能

When confronted with nested loops, the granularity of the computations that are assigned to threads will directly affect performance. Loop transformations such as splitting and merging nested loops can make parallelization easier and more productive.
Автор: админ Последнее обновление: 05.07.2019 - 14:48
Блоги

Reduce Boilerplate Code in Parallelized Loops with C++11 Lambda Expressions

Parallelize loops with Intel® Threading Building Blocks using Intel® C++ Compiler for lambda expressions.
Автор: gaston-hillar (Blackbelt) Последнее обновление: 12.12.2018 - 18:00
Article

Recognize and Measure Vectorization Performance

Get a background on vectorization and learn different techniques to evaluate its effectiveness.
Автор: David M. Последнее обновление: 06.07.2019 - 16:40