Фильтры

Article

OpenCL 2.0 中的 GPU-Quicksort: 嵌套并行性和工作组扫描函数

简介
Автор: Robert I. (Intel) Последнее обновление: 31.05.2019 - 14:20
Блоги

Celebrating a Decade of Parallel Programming with Intel® Threading Building Blocks (Intel® TBB)

This year marks the tenth anniversary of Intel® Threading Building Blocks (Intel® TBB).

Автор: Sharmila C. (Intel) Последнее обновление: 01.08.2019 - 09:30
Article

Recipe: Optimized Caffe* for Deep Learning on Intel® Xeon Phi™ processor x200

The computer learning code Caffe* has been optimized for Intel® Xeon Phi™ processors. This article provides detailed instructions on how to compile and run this Caffe* optimized for Intel® architecture to obtain the best performance on Intel Xeon Phi processors.
Автор: Vamsi Sripathi (Intel) Последнее обновление: 21.03.2019 - 12:40
Article

Caffe* Optimized for Intel® Architecture: Applying Modern Code Techniques

This paper demonstrates a special version of Caffe* — a deep learning framework originally developed by the Berkeley Vision and Learning Center (BVLC) — that is optimized for Intel® architecture.
Автор: Последнее обновление: 06.07.2019 - 16:40
Article

Introducing DNN primitives in Intel® Math Kernel Library

Please notes: Deep Neural Network(DNN) component in MKL is deprecated since intel® MKL ​2019 and will be removed in the next intel® MKL Release.

Автор: Vadim Pirogov (Intel) Последнее обновление: 21.03.2019 - 12:00
Article

面向英特尔® 架构优化的 Caffe*:使用现代代码技巧

This paper demonstrates a special version of Caffe* — a deep learning framework originally developed by the Berkeley Vision and Learning Center (BVLC) — that is optimized for Intel® architecture.
Автор: Последнее обновление: 06.07.2019 - 16:40
Article

Benefits of Intel® Optimized Caffe* in comparison with BVLC Caffe*

Overview
Автор: JON J K. (Intel) Последнее обновление: 30.05.2018 - 07:00
Article

在英特尔® 数学核心函数库中引入 DNN 基元

    深度神经网络 (DNN) 处于机器学习领域的前沿。这些算法在 20 世纪 90 年代后期得到了行业的广泛采用,最初应用于诸如银行支票手写识别等任务。深度神经网络在这一任务领域已得到广泛运用,达到甚至超过了人类能力。如今,DNN 已用于图像识别、视频和自然语言处理以及解决复杂的视觉理解问题,如自主驾驶等。DNN 在计算资源及其必须处理的数据量方面要求非常苛刻。

Автор: Vadim Pirogov (Intel) Последнее обновление: 21.03.2019 - 12:08
Видео

Optimizing Torch Performance for Intel® Xeon Phi Processor Webinar

Learn how machine learning/deep learning applications benefit from code modernization.

Автор: Последнее обновление: 21.03.2019 - 12:40
Article

Vector API Developer Program for Java* Software

This article introduces Vector API to Java* developers. It shows how to start using the API in Java programs, and provides examples of vector algorithms. It provides step-by-step details on how to build the Vector API and build Java applications using it. It provides the location for downloadable binaries for Project Panama binaries.
Автор: Neil V. (Intel) Последнее обновление: 06.07.2019 - 16:30