Фильтры

Article

Requirements for Vectorizable Loops

Vectorization is one of many optimizations that are enabled by default in the latest Intel compilers. In order to be vectorized, loops must obey certain conditions, listed below. Some additional ways to help the compiler to vectorize loops are described.
Автор: Martyn Corden (Intel) Последнее обновление: 27.03.2019 - 14:36
Article

Threading Fortran Applications for Parallel Performance on Multi-Core Systems

Advice and background information is given on typical issues that may arise when threading an application using the Intel Fortran Compiler and other software tools, whether using OpenMP, automatic parallelization or threaded libraries.
Автор: Martyn Corden (Intel) Последнее обновление: 12.12.2018 - 18:00
Article

Vectorization Toolkit

A toolkit that gives 6 Steps to Increase Performance Through Vectorization in Your Application
Автор: AmandaS (Intel) Последнее обновление: 27.03.2019 - 13:34
Article

Intel® Threading Building Blocks, OpenMP* ou threads nativas?

Автор: Michael V. (Intel) Последнее обновление: 05.07.2019 - 09:19
Article

Webinar: Fortran Standard Parallel Programming Features

Fortran Standard Parallel Programming Features in Intel Compilers
Автор: Последнее обновление: 04.07.2019 - 10:00
Блоги

Introduction to OpenMP* on YouTube*

Tim Mattson (Intel) has authored an extensive series of excellent videos as in introduction to OpenMP*.

Автор: Mike P. (Intel) Последнее обновление: 04.07.2019 - 19:51
Блоги

Reduce Boilerplate Code in Parallelized Loops with C++11 Lambda Expressions

Parallelize loops with Intel® Threading Building Blocks using Intel® C++ Compiler for lambda expressions.
Автор: gaston-hillar (Blackbelt) Последнее обновление: 12.12.2018 - 18:00
File Wrapper

Parallel Universe Magazine - Issue 23, November 2015

Автор: админ Последнее обновление: 12.12.2018 - 18:08
Блоги

Intel® Data Analytics Acceleration Library

The Intel® Data Analytics Acceleration Library (Intel® DAAL) helps speed big data analytics by providing highly optimized algorithmic building blocks for all data analysis stages (Pre-processing, Transformation, Analysis, Modeling, Validation, and Decision Making) for offline, streaming and distributed analytics usages. It’s designed for use with popular data platforms including Hadoop*, Spark*,...
Автор: James R. (Blackbelt) Последнее обновление: 27.08.2019 - 13:50
Блоги

英特尔® 数据分析加速库

The Intel® Data Analytics Acceleration Library (Intel® DAAL) helps speed big data analytics by providing highly optimized algorithmic building blocks for all data analysis stages (Pre-processing, Transformation, Analysis, Modeling, Validation, and Decision Making) for offline, streaming and distributed analytics usages. It’s designed for use with popular data platforms including Hadoop*, Spark*,...
Автор: James R. (Blackbelt) Последнее обновление: 27.08.2019 - 13:50