Фильтры

Article

Combining Linux* Message Passing and Threading in High Performance Computing

An article addressing thread and task parallelism. This article can be used to optimize framework methodology. Written by Andrew Binstock--Principal Analyst at Pacific Data Works LLC and lead author of "Practical Algorithms for Programmers."
Автор: Последнее обновление: 06.07.2019 - 16:22
Article

Intel® Fortran Compiler for Linux* - Are the libraries thread safe?

Are the Intel Fortran run-time libraries thread safe?
Автор: админ Последнее обновление: 04.07.2019 - 10:00
Article

OpenMP und inkrementelle Parallelisierung - (article in german)

In diesem Artikel wird der inkrementelle OpenMP Ansatz zur Parallelisierung von sequentiellen Programmen vorgestellt. Der Schwerpunkt liegt auf der praktischen Darstellung von einfachen Programmbeispielen und nicht auf der Vollständigkeit der Beschreibung
Автор: админ Последнее обновление: 12.12.2018 - 18:00
Article

Requirements for Vectorizable Loops

Vectorization is one of many optimizations that are enabled by default in the latest Intel compilers. In order to be vectorized, loops must obey certain conditions, listed below. Some additional ways to help the compiler to vectorize loops are described.
Автор: Martyn Corden (Intel) Последнее обновление: 27.03.2019 - 14:36
Article

Determining Root Cause of Segmentation Faults SIGSEGV or SIGBUS errors

SIGSEGV on Linux and SIGBUS on MacOS Root Causes
Автор: админ Последнее обновление: 26.12.2018 - 14:09
Article

Threading Fortran Applications for Parallel Performance on Multi-Core Systems

Advice and background information is given on typical issues that may arise when threading an application using the Intel Fortran Compiler and other software tools, whether using OpenMP, automatic parallelization or threaded libraries.
Автор: Martyn Corden (Intel) Последнее обновление: 12.12.2018 - 18:00
Article

Loop Modifications to Enhance Data-Parallel Performance

When confronted with nested loops, the granularity of the computations that are assigned to threads will directly affect performance. Loop transformations such as splitting and merging nested loops can make parallelization easier and more productive.
Автор: админ Последнее обновление: 05.07.2019 - 14:47
Article

Granularity and Parallel Performance

One key to attaining good parallel performance is choosing the right granularity for the application. Granularity is the amount of real work in the parallel task. If granularity is too fine, then performance can suffer from communication overhead.
Автор: админ Последнее обновление: 05.07.2019 - 19:52
Article

OpenMP* and the Intel® IPP Library

How to configure OpenMP in the Intel IPP library to maximize multi-threaded performance of the Intel IPP primitives.
Автор: Последнее обновление: 31.07.2019 - 14:30
Article

Detecting Memory Bandwidth Saturation in Threaded Applications

Detecting Memory Bandwidth Saturation in Threaded Applications (PDF 23

Автор: админ Последнее обновление: 05.07.2019 - 19:57