Фильтры

Article

GROMACS recipe for symmetric Intel® MPI using PME workloads

Objectives
Автор: Heinrich Bockhorst (Intel) Последнее обновление: 06.07.2019 - 16:40
Article

面向使用 PME 工作负载的对称英特尔® MPI 的 GROMACS 方案

目标

该文件包(脚本及其说明)提供了针对对称英特尔运行的构建和运行环境。 该文件实际上是自述 (README) 文件包。 对称指采用至强™ 可执行文件和至强融核™ 可执行文件,两者通过英特尔 MPI 同时运行以传输 MPI 消息和集体数据。

Автор: Heinrich Bockhorst (Intel) Последнее обновление: 06.07.2019 - 16:40
Article

Free access to Intel® Compilers, Performance libraries, Analysis tools and more...

Intel® Parallel Studio XE is a very popular product from Intel that includes the Intel® Compilers, Intel® Performance Libraries, tools for analysis, debugging and tuning, tools for MPI and the Intel® MPI Library. Did you know that some of these are available for free? Here is a guide to “what is available free” from the Intel Parallel Studio XE suites.
Автор: админ Последнее обновление: 21.03.2019 - 12:00
Article

Set Up Intel® Software Optimization for Theano* and Supporting Tools

Get recipes for installing development tools and libraries on various platforms for the Python library.
Автор: Sunny G. (Intel) Последнее обновление: 08.05.2018 - 10:50
Article

安装英特尔® Theano*软件优化包和支持工具

Theano* is a Python* library developed at the LISA lab to define, optimize, and evaluate mathematical expressions, including the ones with multi-dimensional arrays. Theano can be installed and used with several combinations of development tools and libraries on a variety of platforms. This tutorial provides one such recipe describing steps to build and install Intel-optimized Theano with Intel®...
Автор: Sunny G. (Intel) Последнее обновление: 08.05.2018 - 10:50
Событие

Colfax Hands-On Webinar Series - Deep Dive

HOW Series “Deep Dive” is a free 20-hour hands-on training on parallel programming, performance optimization in computational applications on IA.
Автор: Последнее обновление: 12.12.2018 - 18:52
Article

Performance of Classic Matrix Multiplication Algorithm on Intel® Xeon Phi™ Processor System

Matrix multiplication (MM) of two matrices is one of the most fundamental operations in linear algebra. The algorithm for MM is very simple, it could be easily implemented in any programming language. This paper shows that performance significantly improves when different optimization techniques are applied.
Автор: Последнее обновление: 14.06.2019 - 11:50