
 
 

Document Number:  337131-003 
 
 

 
 
 
 
 

Retpoline: A Branch Target  
Injection Mitigation 
White Paper 
 
Revision 003 
June, 2018 
 
 
Any future revisions to this content can be found at 
https://software.intel.com/security-software-
guidance/insights/deep-dive-retpoline-branch-target-
injection-mitigation when new information is available. 
This archival document is no longer being updated.  
 

 

 

 

 

 

 

 

 

 

 

 

https://software.intel.com/security-software-guidance/insights/deep-dive-retpoline-branch-target-injection-mitigation
https://software.intel.com/security-software-guidance/insights/deep-dive-retpoline-branch-target-injection-mitigation
https://software.intel.com/security-software-guidance/insights/deep-dive-retpoline-branch-target-injection-mitigation


 
 
 

Retpoline: A Branch Target Injection Mitigation   
White Paper  June 2018 
2   Document Number: 337131-003 

 

 

 

 

 

 

 

 

 

 

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document; however, 
the information reported herein is available for use in connection with the mitigation of the security vulnerabilities described.  

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for 
a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or 
usage in trade.  

This document contains information on products, services and/or processes in development.  All information provided here is 
subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and 
roadmaps.  

The products and services described may contain defects or errors known as errata which may cause deviations from published 
specifications. Current characterized errata are available on request.  

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 
or by visiting www.intel.com/design/literature.htm.  

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.   

*Other names and brands may be claimed as the property of others  

© Intel Corporation. 

 



 
 
 

  Retpoline: A Branch Target Injection Mitigation 
June 2018  White Paper 
Document Number: 337131-003  3 

Contents 

1.0 Introduction ............................................................................................................................................ 5 

2.0 Branch Target Injection (Spectre variant 2) ....................................................................... 6 
2.1 Background ...................................................................................................................................................... 6 
2.2 Exploit Composition ................................................................................................................................... 6 

3.0 Retpoline Concept ............................................................................................................................... 8 

4.0 Retpoline Implementation ...........................................................................................................10 
4.1 Deploying Retpoline - Compilers ................................................................................................... 12 
4.2 Deploying Retpoline – Runtime Patching ................................................................................. 12 
4.3 Interaction with Control-flow Enforcement Technology (CET) ................................. 13 
4.4 Speculation Barriers ............................................................................................................................... 13 

5.0 Retpoline Preconditions .................................................................................................................15 
5.1 Processor Models ...................................................................................................................................... 15 
5.2 Empty RSB Mitigation on Skylake-generation ..................................................................... 15 
5.3 Virtual Machine CPU Identification ............................................................................................... 17 
5.4 Recompilation ............................................................................................................................................. 17 

6.0 BIOS/Firmware Interactions ......................................................................................................19 

7.0 Summary .................................................................................................................................................20 

8.0 References .............................................................................................................................................21 

Appendix A Linux* Implementation Details..................................................................................22 
A.1 Enabling and Enumerating Retpoline Support ..................................................................... 22 

 

 



 
 
 

Retpoline: A Branch Target Injection Mitigation   
White Paper  June 2018 
4   Document Number: 337131-003 

Revision History 

 
Date Revision Description 

February 14, 
2018 

001 Initial release.   

February 21, 
2018 

002 Added information about IA32_ARCH_CAPABILITIES MSR.  

June 25, 
2018 

003 Additional information about SMI handlers and Empty RSB mitigation on Skylake-
generation. 

 

§ 



 
Introduction 
 
 

  Retpoline: A Branch Target Injection Mitigation 
June 2018  White Paper 
Document Number: 337131-003  5 

1.0 Introduction 

As detailed by Google Project Zero and security researchers, three new side-channel 
analysis methods were discovered that potentially facilitate access to unauthorized 
information. All of the methods take advantage of speculative execution, a common 
technique in processors used to achieve high performance. Speculative execution is 
based on predictions, and differs from the normal execution visible to programmers. 
These predictions can be imprecise and can result in speculative execution that 
cannot possibly occur in “normal” execution.  

For additional background information, refer to the overview in Intel’s Analysis of 
Speculative Execution Side Channels. You can find more detailed explanations of 
Speculative Execution Side-Channel Mitigations and Intel’s Mitigation Overview for 
Potential Side-Channel Cache Exploits in Linux* on our Side-Channel Security 
Support website.   

This article discusses the details, exploit conditions, and mitigations for the exploit 
known as branch target injection (Spectre variant 2). There are a number of possible 
mitigation techniques for this method, the mitigation technique described in this 
document is known as retpoline. We discuss how it functions in detail below, along with 
the limitations and its preconditions for effective deployment. 

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://spectreattack.com/spectre.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/Intel_Mitigation_Overview_for_Potential_Side-Channel_Cache_Exploits_Linux_white_paper.pdf
https://software.intel.com/sites/default/files/Intel_Mitigation_Overview_for_Potential_Side-Channel_Cache_Exploits_Linux_white_paper.pdf
https://software.intel.com/en-us/side-channel-security-support
https://software.intel.com/en-us/side-channel-security-support


 
Branch Target Injection (Spectre variant 2) 

 
 

Retpoline: A Branch Target Injection Mitigation   
White Paper  June 2018 
6   Document Number: 337131-003 

2.0 Branch Target Injection (Spectre variant 2) 

2.1 Background 
The branch target injection (Spectre variant 2) exploit targets a processor’s indirect 
branch predictor. Direct branches occur when the destination of the branch is known 
from the instruction alone. Indirect branches1, on the other hand, occur when the 
destination of the branch is not contained in the instruction itself, such as when the 
destination is read from a register or a memory location. The indirect branch 
predictor uses information about previously-executed branches to predict the 
destinations of future indirect branches. 

Programmers’ use of function pointers in compiled languages, like C and C++, can 
result in indirect calls. For instance, sort functions are frequently passed a 
comparison function. Each call from inside sort() to compare() in the example 
below is likely to be an indirect call. 

int compare(int a, int b) 
{ 
    return a < b; 
} 
sort(array, &compare); 

In C++, calls to object functions are frequently implemented with indirect calls, 
especially when inheritance is being used.   

Vehicle *car = new Car(); 

car->drive(); 

In addition to indirect branches that are performed explicitly by programmers, the 
compiler itself might insert indirect branches without the programmer ever being 
aware of them. 

2.2 Exploit Composition 

An exploit using branch target injection (Spectre variant 2) is composed of five 
specific elements, all of which are required for successful exploitation. Traditional 
application software which is not security-sensitive needs to be carefully evaluated 
for all five elements before applying mitigation. 

1. The target of the exploit (the victim) must have some secret data that an 
exploit wants to obtain. In the case of an OS kernel, this includes any data 

                                                                    
1 A full list vulnerable indirect branch instructions is listed in Table 2.1 of Speculative Execution 
Side Channels. 

https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf


 
Branch Target Injection (Spectre variant 2) 
 
 

  Retpoline: A Branch Target Injection Mitigation 
June 2018  White Paper 
Document Number: 337131-003  7 

outside of the user’s permissions, such as memory in the kernel memory 
map. 

2. The exploit needs to have some method of referring to the secret. 
Typically, this is a pointer within the victim’s address space that can be 
made to reference the memory location of the secret data. Passing a 
pointer of an overt communication channel2 between the exploit and 
victim is a straightforward way to satisfy this condition. 

3. The exploit’s reference must be usable during execution of a portion of 
the victim’s code which contains an indirect branch that is vulnerable to 
exploitation. For example, if the exploit pointer value is stored in a 
register, the attacker’s goal is for speculation to jump to a code sequence 
where that register is used as a source address for a move operation.  

4. The exploit must successfully influence this indirect branch to 
speculatively mispredict and execute a gadget. This gadget, chosen by the 
exploit, leaks the secret data via a side channel, typically by cache-timing. 

5. The gadget must execute during the “speculation window,” which closes 
when the processor determines that the gadget execution was 
mispredicted. 

  

The retpoline mitigation is applied to mitigate the vulnerable indirect branches in 
element 4 and has no effect on the other elements. But because the exploit depends 
on satisfying all five elements, removing element 4 is sufficient to stop the branch 
target injection (Spectre variant 2) exploit. 

                                                                    
2 An example overt channel is the system call interface between an OS kernel and an application. 



 
Retpoline Concept 

 
 

Retpoline: A Branch Target Injection Mitigation   
White Paper  June 2018 
8   Document Number: 337131-003 

3.0 Retpoline Concept 

Mitigations for speculation-based, side-channel security issues fall into two 
categories: directly manipulating speculation hardware, or indirectly controlling 
speculation behavior. Direct manipulation of the hardware is generally performed by 
microcode updates or manipulation of hardware registers. Indirect control is 
accomplished via software constructs that limit or constrain speculation. Retpoline is 
a hybrid approach since it requires updated microcode to make the speculation 
hardware behavior more predictable on some processor models. However, retpoline 
is primarily a software construct that leverages specific knowledge of the underlying 
hardware to mitigate branch target injection (Spectre variant 2). 

As discussed earlier, the branch target injection (Spectre variant 2) exploit relies on 
influencing the speculated targets of indirect branches. Indirect JMP and CALL 
instructions consult the indirect branch predictor to direct speculative execution to 
the most likely target of the branch. The indirect branch predictor is a relatively large 
hardware structure which cannot be easily managed by the operating system. 
Instead of attempting to manage or predict its behavior, a retpoline is a method to 
bypass the indirect branch predictor. Refer to Figure 1 and Figure 2 for the flow of 
indirect-branch prediction before and after retpoline is implemented. 

Prediction of RET instructions differs from JMP and CALL instructions because RET 
first relies on the Return Stack Buffer (RSB). In contrast to the indirect branch 
predictors RSB is a last-in-first-out (LIFO) stack where CALL instructions “push” 
entries and RET instructions “pop” entries. This mechanism is amenable to 
predictable software control. 
 



 
Retpoline Concept 
 
 

  Retpoline: A Branch Target Injection Mitigation 
June 2018  White Paper 
Document Number: 337131-003  9 

 

Figure 1: Speculative Execution without retpoline 

 

Figure 2: Speculative execution with retpoline 



 
Retpoline Implementation 

 
 

Retpoline: A Branch Target Injection Mitigation   
White Paper  June 2018 
10   Document Number: 337131-003 

4.0 Retpoline Implementation 

Deploying retpoline requires replacing vulnerable indirect branches with non-
vulnerable retpoline sequences. The simplest retpoline sequence is a replacement 
for a single indirect JMP instruction. 

Table 1: Indirect jump replacement with retpoline (gas syntax) 

Before 
retpoline 

jmp *%rax 

After 
retpoline 

1:        call load_label 
   capture_ret_spec: 
2:        pause ; lfence 
3:        jmp capture_ret_spec 
   load_label: 
4:        mov %rax, (%rsp) 
5:        ret 

In this example, a jump is performed to an instruction address stored in the %rax 
register. Without retpoline, the processor’s speculative execution typically consults the 
indirect branch predictor and may speculate to an address controlled by an exploit 
(satisfying element 4 of the five elements of branch target injection (Spectre variant 2) 
exploit composition listed above). 

The retpoline sequence is more complicated and works in several stages to separate 
the speculative execution from the non-speculative execution: 

1. “1: call load_label” pushes the address of “2: pause ; lfence” on 
the stack and the RSB, and then jumps to: 

2. “4: mov %rax, (%rsp)” takes the target of the indirect jump (in %rax) and 
writes it over the return address stored on the stack. At this point the in-
memory stack and the RSB differ. 

3. If speculating, the CPU uses the RSB entry created in step 1 and jumps to “2: 
pause ; lfence”. It is “trapped” in an infinite loop. The Speculation Barriers 
section has more details about the importance of this sequence. 

4. Eventually, the CPU realizes that the speculative ret does not agree with the 
in-memory stack value, and the speculative execution is stopped. Execution 
jumps to *%rax. 

An indirect CALL is more complicated, but uses the same approach, as shown below: 

Table 2: Indirect call replacement with retpoline (GNU Assembler syntax) 

Before retpoline call *%rax 

After retpoline 1:        jmp label2 
  label0: 
2:        call label1 
  capture_ret_spec: 



 
Retpoline Implementation 
 
 

  Retpoline: A Branch Target Injection Mitigation 
June 2018  White Paper 
Document Number: 337131-003  11 

3:        pause ; lfence 
4:        jmp capture_ret_spec 
  label1: 
5:        mov %rax, (%rsp) 
6:        ret 
  label2: 
7:        call label0 
8:        … continue execution 

 
1. “1: jmp label2”, jumps to “7: call label0”. 
2. “7: call label0” pushes the address of “8: … continue execution” 

on the stack and the RSB, then jumps to: 
3. “2: call label1” which pushes the address of “3: pause ; lfence” on 

the stack and the RSB, then jumps to: 

 

Figure 3: Stack and RSB with retpoline enabled (steps 1 to 3) 

4. “5: mov %rax, (%rsp)” which takes the target of the indirect call (in %rax) 
and writes it over the return address stored on the stack. At this point the in-
memory stack and the RSB differ. 

5. “6: ret”. If speculating, the CPU consumes the RSB entry created in step 3 
and jumps to “3: pause ; lfence”. It is “trapped” in an infinite loop. The 
speculation barriers section has more details about the importance of this 
sequence. 

6. Eventually, the CPU realizes that the speculative ret does not agree with the 
in-memory stack value, and that speculative execution is stopped. Execution 
jumps to the target of the indirect call: *%rax, which was placed on the stack in 
step 4. 

 

Figure 4: Stack and RSB with retpoline enabled (steps 4 to 6) 

7. The target of the indirect call returns, consuming the RSB and in-memory stack 
entry placed there in step 2. 



 
Retpoline Implementation 

 
 

Retpoline: A Branch Target Injection Mitigation   
White Paper  June 2018 
12   Document Number: 337131-003 

 

Figure 5: Stack and RSB with retpoline enabled (step 7) 

4.1 Deploying Retpoline - Compilers 

Since most indirect branches are generated by compilers when building a binary, 
deploying retpoline requires recompiling the software that needs mitigation. A 
retpoline-capable compiler can avoid generating any vulnerable indirect CALL or 
indirect JMP instructions and instead uses retpoline sequences. Of course, for code not 
generated by the compiler (such as inline assembly) programmers must insert retpoline 
sequences manually. 

4.2 Deploying Retpoline – Runtime Patching 

One option when deploying retpoline is to have the compiler insert a full retpoline 
sequence at each indirect branch that needs mitigation. However this makes the 
code larger than needed, so the preferred option is to have the program itself 
provide the retpoline sequences in one central place, and then have the compiler 
refer to these sequences. For example, the program might provide the sequence 
shown in Table 2 above at a location called retpoline_target_in_rax. 

Table 3: Example of central retpoline sequence3 

Before retpoline call *%rax 

After retpoline call retpoline_target_in_rax 

The program might also provide retpoline sequences for many possible call 
instruction possibilities, such as for making calls to targets stored in each of the 
general purpose registers. 

This approach provides a more compact instruction sequence at each indirect call 
site, and also concentrates the retpoline implementations into a controlled set of 
locations. Programs supporting runtime patching (such as the Linux kernel) can 
evaluate systems for vulnerability to branch target injection (Spectre variant 2). If 

                                                                    
3 Runtime patching in this manner requires an out-of-line retpoline sequence which differs from 
the sequence in Table 2. 



 
Retpoline Implementation 
 
 

  Retpoline: A Branch Target Injection Mitigation 
June 2018  White Paper 
Document Number: 337131-003  13 

the system is not vulnerable (such as on systems with older processors, or with 
future processors implementing enhanced IBRS mitigations), the program-
provided retpoline sequence can be replaced with a non-mitigated sequence. 

Table 4: Runtime patch example for mitigated CPUs 

Mitigated Code Runtime Patch for Mitigated CPU 
retpoline_target_in_rax: 
1:        jmp label3 
  label0: 
2:        call label1 
  Capture_ret_spec: 
3:        lfence 
... 

retpoline_target_in_rax 
1:        call *%rax 
2:        ret 
 
// never reached: 
3:        lfence 
... 

 

4.3 Interaction with Control-flow Enforcement Technology 
(CET) 

Control-flow Enforcement Technology (CET) is a future CPU technology which 
provides capabilities to defend against Return-Oriented-Programming (ROP) 
control-flow subversion attacks. However, the retpoline technique closely resembles 
the approaches used in ROP attacks. If used in conjunction with CET, retpoline might 
trigger false positives in the CET defenses. 

To avoid this conflict, future Intel processors implementing CET will also contain 
hardware mitigations for branch target injection (Spectre variant 2) (enhanced IBRS), 
that obviate the need for retpoline. On these processors, runtime patching can be used 
both to remove conflicts with CET and regain use of the indirect branch predictor for 
hardened indirect branch speculation. 

4.4 Speculation Barriers 

The retpoline sequence contains instructions for which there can be performance 
concerns (LFENCE and PAUSE). Despite this, retpoline can still have attractive 
performance characteristics. 

The architectural specification for LFENCE defines that it does not execute until all prior 
instructions have completed, and no later instructions begin execution until LFENCE 
completes. This specification limits the speculative execution that a processor 
implementation can perform around the LFENCE, possibly impacting processor 
performance, but also creating a tool with which to mitigate speculative-execution side-
channel attacks. 

However, this architecturally-defined speculation control behavior is only required 
when the processor actually executes (retires) the LFENCE. A speculatively-executed 

https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf


 
Retpoline Implementation 

 
 

Retpoline: A Branch Target Injection Mitigation   
White Paper  June 2018 
14   Document Number: 337131-003 

LFENCE that never actually executes (retires) may have a smaller performance impact 
because the speculative behavior is not architecturally-defined. The LFENCE (and other 
instructions impacting speculation that are part of the retpoline construct) is only 
speculatively executed and thus may not exhibit the same performance impact typically 
associated with speculation barriers. This allows retpoline to impact speculative 
execution without the overhead traditionally associated with instructions that directly 
impact speculation. 

 



 
Retpoline Preconditions 
 
 

  Retpoline: A Branch Target Injection Mitigation 
June 2018  White Paper 
Document Number: 337131-003  15 

5.0 Retpoline Preconditions 

5.1 Processor Models 

Retpoline is known to be an effective branch target injection (Spectre variant 2) 
mitigation on Intel processors belonging to family 6 (enumerated by the CPUID 
instruction) that do not have support for enhanced IBRS. On processors that support 
enhanced IBRS, it should be used for mitigation instead of retpoline. 

5.2 Empty RSB Mitigation on Skylake-generation 

As described in the Retpoline Concept section, the RSB is a fixed-size stack 
implemented in hardware. As with any stack, it can underflow in certain conditions 
causing undesirable behavior. “RSB stuffing” is a technique to reduce the likelihood of 
an underflow from occurring. 

The predictable speculative behavior of the RET instruction is the key to retpoline 
being a robust mitigation. RET has this behavior on all processors which are based on 
the Intel® microarchitecture codename Broadwell and earlier when updated with the 
latest microcode. Processors based on the Intel® microarchitecture codename Skylake 
and its close derivatives have different RSB behavior than other processors when the 
RSB is empty. Processors with this RSB behavior can be identified using the following 
DisplayFamily/DisplayModel signatures provided by the CPUID instruction4: 

Table 5: Processors with different RSB behavior 

Family Model 

06H 4EH 

06H 5EH 

06H 55H 

06H 66H 

06H 67H 

06H 8EH 

06H 9EH 

                                                                    
4 Additional processors may exhibit vulnerable RSB behavior that are not listed in this table. 

https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://downloadcenter.intel.com/download/27337/Linux-Processor-Microcode-Data-File


 
Retpoline Preconditions 

 
 

Retpoline: A Branch Target Injection Mitigation   
White Paper  June 2018 
16   Document Number: 337131-003 

When the RSB “stack” is empty on these processors, a RET instruction may speculate 
based on the contents of the indirect branch predictor, the structure that retpoline is 
designed to avoid. The RSB may become empty under the following conditions: 

1. Call stacks deeper than the minimum RSB depth (16) may empty the RSB when 
executing RET instructions. This includes CALL instructions and RET 
instructions within aborting TSX transactions. 

2. IBPB command may empty the RSB.  
3. Certain instructions may empty the RSB5: 

a. WRMSR to 0x79 (microcode update) , 0x7A (SGX activation). 
b. WRMSR/RDMSR to/from 0x8C-0x8F (SGX Launch Enclave Public Key 

Hash). 
c. SGX instructions (ENCLS, ENCLU) and SGX CPUID leaf. 
d. Imbalance between CALL instructions and RET instructions that leads 

to more RET instructions than CALL instructions. For example: 
i. OS context switch 
ii. C++ exception 
iii. longjmp 

4. Entering sleep state of C6 or deeper (for example, MWAIT) may empty the RSB. 

The depth of the call stack may depend on many factors that are not known until 
runtime which makes the call stack difficult to mitigate in software. However, exploiting 
a deep call stack is expected to require much more comprehensive control and 
prediction of the behavior of the CPU and program state than a traditional branch 
target injection (Spectre variant 2) attack. Intel considers the risk of an attack based on 
exploiting deep call stacks low. 

There are also a number of events that happen asynchronously from normal program 
execution that can result in an empty RSB. Software may use “RSB stuffing” sequences 
whenever these asynchronous events occur: 

1. Interrupts/NMIs/traps/aborts/exceptions which increase call depth. 
2. System Management Interrupts (SMI) (see BIOS/Firmware Interactions). 
3. Host VMEXIT/VMRESUME/VMENTER. 
4. Microcode update load (WRMSR 0x79) on another logical processor of the same 

core. 

Software may avoid RSB underflow by inserting an “RSB stuffing” sequence following 
all of the above conditions. 

These sequences, with an example of one instance shown below, can be removed using 
runtime patching techniques in the same way as the retpoline sequences on processors 
that do not require this mitigation. 

                                                                    
5 RSB stuffing techniques help avoid use of the indirect branch predictor. Even though the IBPB 
command empties the RSB, it also mitigates exploit content in the indirect branch predictor. RSB 
manipulation following an IBPB command may not provide additional meaningful mitigation. 



 
Retpoline Preconditions 
 
 

  Retpoline: A Branch Target Injection Mitigation 
June 2018  White Paper 
Document Number: 337131-003  17 

Table 6: RSB stuffing 

void rsb_stuff(void) 
{ 
        asm(".rept 16\n" 
            "call 1f\n" 
            "pause ; lfence\n" 
            "1: \n" 
            ".endr\n" 
            "addq $(8 * 16), %rsp\n"); 
} 

 

5.3 Virtual Machine CPU Identification 

A valuable tool in modern data centers is live migration of virtual machines (VMs) 
among a cluster of bare-metal hosts. However, those bare-metal hosts often differ in 
hardware capabilities. These differences could prevent a virtual machine that started on 
one host from being migrated to another host that has different capabilities. For 
instance, a virtual machine using Intel® Advanced Vector Extensions 512 (Intel® AVX-
512) instructions could not be live-migrated to an older system without Intel® AVX-512. 

A common approach to solving this issue is exposing the oldest processor model with 
the smallest subset of hardware features to the VM. This addresses the live-migration 
issue, but results in a new issue: Software using model/family numbers from CPUID can 
no longer detect when it is running on a newer processor that is vulnerable to exploits 
of Empty RSB conditions.  

To remedy this situation, an operating system running as a VM can query bit 2 of the 
IA32_ARCH_CAPABILITIES MSR, known as “RSB Alternate” (RSBA). When RSBA is set, it 
indicates that the VM may run on a processor vulnerable to exploits of Empty RSB 
conditions regardless of the processor’s DisplayFamily/DisplayModel signature, and 
that the operating system should deploy appropriate mitigations. Virtual machine 
managers (VMM) may set RSBA via MSR interception to indicate that a virtual machine 
might run at some time in the future on a vulnerable processor. 

5.4 Recompilation 

Mitigation with retpoline requires that all code in a program (or OS kernel) is compiled 
with a retpoline-enabled compiler in order to make sure vulnerable indirect branches 
are replaced with the retpoline sequence. In practice, this means that retpoline can only 
be applied in environments where recompilation and redeployment of updated 
binaries is possible. This includes instances where full source code is available, or 
where instructions are generated by a JIT compiler.  



 
Retpoline Preconditions 

 
 

Retpoline: A Branch Target Injection Mitigation   
White Paper  June 2018 
18   Document Number: 337131-003 

However, retpoline is not a practical mitigation for environments where full 
recompilation itself is not practical. Other mitigations may be appropriate in those 
environments. 



 
BIOS/Firmware Interactions 
 
 

  Retpoline: A Branch Target Injection Mitigation 
June 2018  White Paper 
Document Number: 337131-003  19 

6.0 BIOS/Firmware Interactions 

System Management Interrupt (SMI) handlers can leave the RSB in a state that OS code 
does not expect.  In order to avoid RSB underflow on return from SMI, an SMI handler 
may implement RSB stuffing (for parts identified in Table 5) before returning from 
System Management Mode (SMM). Updated SMI handlers are provided via system BIOS 
updates. 



 
Summary 

 
 

Retpoline: A Branch Target Injection Mitigation   
White Paper  June 2018 
20   Document Number: 337131-003 

7.0 Summary 

There are a number of possible mitigation techniques for the branch target injection 
(Spectre variant 2) exploit. The retpoline mitigation technique presented in this 
document is resistant to exploitation and has attractive performance properties 
compared to other mitigations. 



 
References 
 
 

  Retpoline: A Branch Target Injection Mitigation 
June 2018  White Paper 
Document Number: 337131-003  21 

8.0 References 
• Google* article on retpoline: Retpoline: a software construct for preventing branch-

target-injection 
• Side Channel Security Issue: Software Support 

 

 

https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://software.intel.com/en-us/side-channel-security-support/


 
References 

 
 

Retpoline: A Branch Target Injection Mitigation   
White Paper  June 2018 
22   Document Number: 337131-003 

Appendix A Linux* Implementation Details 

A.1 Enabling and Enumerating Retpoline Support 
The Linux kernel implements retpoline to protect the kernel from exploits. The 
CONFIG_RETPOLINE build option is used to enable support. You can check for support 
on many distributions by running the following command: 

grep CONFIG_RETPOLINE /boot/config-`uname -r` 

This build option indicates whether retpoline support was requested in the build. 
However, even with this option set, you can successfully build the kernel even if the 
compiler does not support retpoline. In this case, the kernel will only contain minimal 
mitigations with retpoline in assembly code. These kernels will indicate that they are 
still “Vulnerable” to branch target injection (Spectre variant 2), as shown below: 

# cat /sys/devices/system/cpu/vulnerabilities/spectre_v2 
Vulnerable: Minimal generic ASM retpoline 

Kernels which were built with a compiler that does support retpoline will indicate that 
they are mitigated and are no longer vulnerable: 

# cat /sys/devices/system/cpu/vulnerabilities/spectre_v2 
Mitigation: Full generic retpoline 

 

 

 


	1.0 Introduction
	2.0 Branch Target Injection (Spectre variant 2)
	2.1 Background
	2.2 Exploit Composition

	3.0 Retpoline Concept
	4.0 Retpoline Implementation
	4.1 Deploying Retpoline - Compilers
	4.2 Deploying Retpoline – Runtime Patching
	4.3 Interaction with Control-flow Enforcement Technology (CET)
	4.4 Speculation Barriers

	5.0 Retpoline Preconditions
	5.1 Processor Models
	5.2 Empty RSB Mitigation on Skylake-generation
	5.3 Virtual Machine CPU Identification
	5.4 Recompilation

	6.0 BIOS/Firmware Interactions
	7.0 Summary
	8.0 References
	Appendix A Linux* Implementation Details
	A.1 Enabling and Enumerating Retpoline Support

