Bring out the Best in Pixels
Video Pipe in Intel® Processor Graphics

Victor H. S. Ha and Yi-Jen Chiu
Graphics Architecture, Intel Corp.
Contents

Intel Processor Graphics

Video Processing Pipe
 - Video Processing Modules
 - Control Panel
 - Adaptive Processing

Summary

Q&A
NEW EXPERIENCES

Media & Display

GPU Architecture Playbook for Media Computing

INNOVATIVE FORM FACTORS

Phones & Tablets

Ultrabooks™

Laptops

Workstations & Servers

Intel is building Media solutions with Great Power and Scalable Performance for Innovative Form Factors and New Experiences
• 4th Generation Intel® Core™ Microprocessor, built on 22 nm process technology

• Next Generation Intel® HD Graphics with Microsoft® DirectX®11.1, OpenGL® 4.0, OpenCL® 1.2 support

• Three Simultaneous Display, HDMI, DisplayPort®, with high-resolution up to 4Kx2K

• Significant 3D and Media performance improvement
Multi-format Codec
Decoded MPEG2 / VC1
AVC SVC MVC
JPEG / MJPEG

VQE
Denoise
Deinterlace
Contrast
Saturation
Skin-tone
Gamut
Color Correction
Stabilization

Media Sampler
Scaling
Sharpness

010101000100101110101010101010101010101...
Contents

Intel Processor Graphics

Video Processing Pipe

- Video Processing Modules
- Control Panel
- Adaptive Processing

Summary

Q&A
Introducing Video Quality Engine

Multi-Format Codec
- Video Decode and Encode
- High Performance Parallel Engine

Video Quality Engine
- Video Processing
- Color Processing

Video Quality Engine Pipeline

Front-End Thread Dispatch/Management

Media FrontEnd

Media Optimized Execution Units
- Array of Execution Units
- EU
- Texture Samplers
- Pixel Ops
- Media Samplers

Media Accelerators
- $L3$ Cache
Video Processing Pipe

Dedicated video processing on newly designed **Video Quality Engine (VQE)**

Support for an extensive suite of functions for higher quality video at lower power

- Denoise
- Deinterlace
- Skin-tone
- Scalor
- Sharpness
- Image Stabilization
- Compression
- Saturation
- Contrast
- ProcAmp
- Gamut Expansion
- CSC
Contents

Intel Processor Graphics

Video Processing Pipe
 - Video Processing Modules
 - Control Panel
 - Adaptive Processing

Summary

Q&A
De-noise

Spatial and Temporal De-noise Filter
- Global noise level measurement
- Content-adaptive spatiotemporal filtering of noise
- Motion history-based blending of spatial and temporal filter results

Block Interface
- Input: YCbCr 420/422
- Output: YCbCr 420/422
De-interlace

Convert interlaced contents to progressive format
- Edge-adaptive Spatial Interpolation result + Motion-compensated Interpolation result
- Motion-adaptive Blending with Temporal Filtering results based on Spatial Temporal Motion Measure (STMM)
- Detection of most common cadences

Chroma Upsampling from 420 to 422
Skin-tone Processing

Per-pixel Enhancement of Skin-tone Pixels
- Reproduce the natural skin colors on the display screen
- Skin Tone Detection identifies pixels with skin-like colors with per-pixel indicator
- Skin Tone Enhancement modifies the Saturation and Hue of the skin-tone pixels

Block Interface
- Input: YCbCr444
- Output: YCbCr444 with modified CbCr components; Per-pixel skin tone indicator
Contrast Enhancement

Automatic Contrast Enhancement: Per-pixel mapping of luma to enhance contrast
1. Histogram of luma Y pixel values is generated for the input video frame
2. Piece-Wise Linear Function (PWLF) is generated from luma histogram
3. Pixel values are modified according to the PWLF

Block Interface
- Input: YCbCr 444
- Output: YCbCr 444 with modified Y
Saturation Enhancement

Per-Pixel Saturation Enhancement
- Utilize 6 basic colors as primaries/anchors (Red, Green, Blue, Magenta, Yellow, Cyan)
- Adjust colorfulness (saturation) of pixels while maintaining their color (hue)

Block Interface
- Input: YCbCr 444
- Output: YCbCr 444 with modified CbCr components
Color Correction

Display proper colors on display screen
1. Inverse gamma correction via PWLF
2. 3x3 matrix multiplication with input/output offset
3. Forward gamma correction via PWLF

Block Interface
- Input: RGB
- Output: RGB
Image Stabilization

Stabilize shaky video contents captured by handheld camera devices

Usage models

- Real-time playback: Watch real-time playback of video streams
- Offline processing: Stabilize shaky video and save/transmit for video sharing

Block Interface

- Input: YCbCr 420
- Output: YCbCr 420
Scaler

Adaptive Video Scaler

- Advanced scaling method for adaptive scaling mode
- Content-adaptive per-pixel blending of polyphase filtering and bilinear filtering reduces ringing
- Programmable coefficient tables available for Y / CbCr channels in horizontal and vertical directions
- Support for up to 16:1 downscaling and max output picture size of 16Kx16K for YUV420/422/444/RGB input picture
Sharpness Enhancement

Enhancement of Image Sharpness and Details

- Content adaptive spatial filtering applied to luma channel
- User control of sharpness enhancement strength = [0, 63]

Adaptive to Skin Tone Pixels

- Skin tone information is utilized
- Enhance detail information without over-sharpening of the skin regions

Interface

- Input: YCbCr 444
- Output: YCbCr 444
Contents

Intel Processor Graphics

Video Processing Pipe
 ▪ Video Processing Modules
 ▪ Control Panel
 ▪ Adaptive Processing

Summary

Q&A
Control Panel

- Standard Color Correction
 - Brightness
 - Contrast
 - Hue
 - Saturation
Control Panel

- **Input Range**
 - Limited
 - Full

- **Total Color Correction**
 - Saturation Enhancement
 - Adjustment = [0, 255]
Control Panel

- **Sharpness**
 - Driver Custom Settings = [0, 64]

- **Skin Tone Enhancement**
 - On = [0, 9]
 - Off
Control Panel

- **Noise Reduction**
 - Luma only = [0, 64]
 - Luma and Chroma = [0, 64]
- **Contrast Enhancement**
 - On/Off
- **Film Mode Detection**
 - On/Off
Hardware Statistics

Statistics are gathered on
- Per-block (16x4) basis for encoder stats
- Per-frame basis for other stats

16 bytes of encoder statistics data for per-block statistics is available
- Temporal Variances
- De-noise: Sum of block noise estimates and Number of blocks per frame

A variety of per-frame data is stored in a linear surface
- Skin-tone: Ymax = Max luma value, Ymin = Min luma value, Counter = Number of skin pixels
- Contrast: Luma histogram with 256 bins and 24-bits per bin
- Gamut Compression: Sum of distances of out-of-gamut-range pixels clipped to 32 bits, Number of out-of-gamut-range pixels in 29 bits
Adaptive Processing & Control

The goal of adaptive processing is to deliver optimized video experience.

Hardware statistics and adaptive control logic allow end-to-end optimization and effective sharing of data and information across all processing blocks.
Contents

Intel Processor Graphics

Video Processing Pipe
- Video Processing Modules
- Control Panel
- Adaptive Processing

Summary

Q&A
Summary

Intel is building Media Solutions for Quality, Power, and Scalable Performance

Dedicated HW acceleration for codecs, video and image processing, and analytics

Media processing in 4th Generation Processor Graphics delivers:
- VQE: A new feature with a full-set of video processing pipe
- Adaptive Processing & Control for integrated and optimized video pipe behavior
- Ready for various application scenarios and network/mobility environments

Looking Ahead
- Future generations of Intel media processing will address further HW acceleration in video processing, camera image processing, and perceptual computing/machine vision applications
- Improvement in power and performance fitted to exciting new form-factors
Contents

Intel Processor Graphics

Video Processing Pipe
- Video Processing Modules
- Control Panel
- Adaptive Processing

Summary

Q&A