Intel® Xeon Phi™ Coprocessor
Introductions
Legal Disclaimer

- INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPETY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

- Intel may make changes to specifications and product descriptions at any time, without notice.

- All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

- Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

- Sandy Bridge and other code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the user

- Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance

- Intel, Core, Xeon, VTune, Cilk, Intel and Intel Sponsors of Tomorrow, and Intel Sponsors of Tomorrow. logo, and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

- *Other names and brands may be claimed as the property of others.

- Copyright ©2013 Intel Corporation.

- Hyper-Threading Technology: Requires an Intel® HT Technology enabled system, check with your PC manufacturer. Performance will vary depending on the specific hardware and software used. Not available on all Intel® Core™ processors. For more information including details on which processors support HT Technology, visit http://www.intel.com/info/hyperthreading

- Intel® 64 architecture: Requires a system with a 64-bit enabled processor, chipset, BIOS and software. Performance will vary depending on the specific hardware and software you use. Consult your PC manufacturer for more information. For more information, visit http://www.intel.com/info/em64t

- Intel® Turbo Boost Technology: Requires a system with Intel® Turbo Boost Technology capability. Consult your PC manufacturer. Performance varies depending on hardware, software and system configuration. For more information, visit http://www.intel.com/technology/turboboost
Objective

• Broad introduction of the Intel® MIC Architecture
 – Technical Overview
 – Some advanced subjects and techniques
 – Train the trainer

• Real case studies on porting, performance, and techniques

• Work with you to find optimization opportunities and explore your code
Introductions

• Day 1 and 2 (Training)
 – Taylor Kidd, DRD Intel® MIC Architecture Scale Team Lead
 – Thanh Phung, Intel MIC Architecture Optimization Expert

• Day 3 (Case Studies)
 – mpiHMMER, Hogbom Clean - Rama Kishan Malladi
 – QCD - Dhiraj Kalamkar
 – 1D FFT - Daehyun Kim
 – WRF - Indraneil Gokhale

• Day 4 and 5 (Code Dungeon)
Training

• 2 days w/ lecture and labs
• Topics
 – Day 1
 o Architecture
 o SW Ecosystem and Programming Models
 o MPI
 o Measuring Performance
 – Day 2
 o Offloading Programming Model
 ▪ Implicit & Explicit
 o Vectorization, Advanced Topics
 o Optimization/Tuning Techniques
 – If we have time
 o Communication
 o Tools (Intel® Math Kernel Library, GDB)
Day 3: Case studies

<table>
<thead>
<tr>
<th>Case-Study</th>
<th>Engineer</th>
<th>Engineer Location</th>
<th>Schedule Perth Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFT</td>
<td>Kim Daehyun</td>
<td>PST</td>
<td>09:00 – 10:00</td>
</tr>
<tr>
<td>WRF</td>
<td>Indraneil G</td>
<td>PST</td>
<td>10:15 – 11:15</td>
</tr>
<tr>
<td>QCD</td>
<td>Dhiraj K</td>
<td>IST</td>
<td>11:15 – 12:30</td>
</tr>
<tr>
<td>mpiHMMER</td>
<td>Rama M</td>
<td>IST</td>
<td>14:00 – 14:30</td>
</tr>
<tr>
<td>Hogbom Clean</td>
<td>Rama M</td>
<td>IST</td>
<td>14:30 – 15:15</td>
</tr>
</tbody>
</table>

This list may change due to presenter availability, appropriateness, and other factors.
Day 4 & 5: Dungeon / Intel Optimization Experts

• Two Intel optimization experts
• Work with you to optimize your code
 – Look for optimization opportunities
 – Tune your code for both Intel® Xeon® processor and the Intel® MIC architecture
 – Explore use of different tools and libraries

• Expectations
 – Have only a limited time with your code
 – Have only a limited time to work with you
Thanks for inviting us

- We should have an enjoyable and productive week.
Intel® compilers, associated libraries and associated development tools may include or utilize options that optimize for instruction sets that are available in both Intel® and non-Intel microprocessors (for example SIMD instruction sets), but do not optimize equally for non-Intel microprocessors. In addition, certain compiler options for Intel compilers, including some that are not specific to Intel micro-architecture, are reserved for Intel microprocessors. For a detailed description of Intel compiler options, including the instruction sets and specific microprocessors they implicate, please refer to the “Intel® Compiler User and Reference Guides” under “Compiler Options." Many library routines that are part of Intel® compiler products are more highly optimized for Intel microprocessors than for other microprocessors. While the compilers and libraries in Intel® compiler products offer optimizations for both Intel and Intel-compatible microprocessors, depending on the options you select, your code and other factors, you likely will get extra performance on Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and Supplemental Streaming SIMD Extensions 3 (Intel® SSSE3) instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best performance on Intel® and non-Intel microprocessors, Intel recommends that you evaluate other compilers and libraries to determine which best meet your requirements. We hope to win your business by striving to offer the best performance of any compiler or library; please let us know if you find we do not.

Notice revision #20101101
Backup