From Programs to Interpretable Deep Models & Back

Eran Yahav
Technion & Codota
Analysis and Synthesis with “Big Code”

Programming Languages + ML + IR + ...

<table>
<thead>
<tr>
<th>Title</th>
<th>Conference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code2vec: Learning Distributed Representations of Code</td>
<td>POPL’19</td>
</tr>
<tr>
<td>On the Practical Computational Power of Finite Precision RNNs for Language Recognition</td>
<td>ACL’18</td>
</tr>
<tr>
<td>Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples</td>
<td>ICML’18</td>
</tr>
<tr>
<td>A General Path-based Representation for Predicting Program Properties</td>
<td>PLDI’18</td>
</tr>
<tr>
<td>Synthesis of Forgiving Data Extractors</td>
<td>WSDM’17</td>
</tr>
<tr>
<td>Lossless Separation of Web Pages into Layout Code and Data</td>
<td>KDD’16</td>
</tr>
<tr>
<td>Statistical Similarity of Binaries</td>
<td>PLDI’16</td>
</tr>
<tr>
<td>Estimating Types in Stripped Binaries</td>
<td>POPL’16</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Synthesis from partial programs</td>
<td>OOPSLA’12</td>
</tr>
</tbody>
</table>

https://github.com/tech-srl/
http://code2vec.org

PRIME
TRACY
DIZY
Like2Drops

https://www.codota.com

Sharon Shoham
(Prof. @TAU)

Yoav Goldberg
(Prof. @BIU)

Omer Levy
(FAIR)

Hila Peleg

Dana Drachsler

Shir Yadid

Meital Zilberstein

Adi Omari

Nimrod Partush

Omer Katz

Yaniv David

Uri Alon

Gail Weiss

Yoav Goldberg
(Prof. @BIU)

Omer Levy
(FAIR)
Lots of code available on the web

Learn from all the code out there to make software development faster and smarter
Why now?

- Big code
- Static program analysis
- Machine learning
- Computation resources
Augmented Programmer Intelligence

• Predict code (preventive software quality)
 • Automate mundane tasks
 • Keep devs on the main path
 • “likely by construction”

• Check code
 • Standardize on practices learned from code
From programs to models and back

• Neural networks for **predicting program elements**

• What is it that a network **has learned**?
 • A model that provides some explanation
 • A new technique for extracting explanation (DFA) from a recurrent neural network

• What is it that a network **can learn**?
Code2vec [POPL’19]

- A neural network for **predicting program elements from context**
- Learns name & path embeddings, simultaneously learns to aggregate them
- Example: **predicting method names** = ~14M training methods (1 day on a GPU)

Method names task: Suggesting accurate method and class names. [Allamanis, FSE 2015]
How does it work?
Learn tag distribution conditioned on code

\[P(L | C) \]

- Using syntactic paths in C
Background: Distributed Representations ("embeddings")

"One-hot" vectors

<table>
<thead>
<tr>
<th>Word</th>
<th>hello</th>
<th>world</th>
<th>how</th>
<th>are</th>
<th>you</th>
<th>hi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector</td>
<td>[0,0,...,0,1,0,0]</td>
<td>[0,0,...,0,1,0,0]</td>
<td>[0,0,...,0,1,0,0]</td>
<td>[0,0,...,0,1,0,0]</td>
<td>[0,0,...,0,1,0,0]</td>
<td>[0,0,...,0,1,0,0]</td>
</tr>
</tbody>
</table>

Distributed representations

<table>
<thead>
<tr>
<th>Word</th>
<th>hello</th>
<th>world</th>
<th>how</th>
<th>are</th>
<th>you</th>
<th>hi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector</td>
<td>[0,0,...,0,1,0,0]</td>
<td>[0,0,...,0,1,0,0]</td>
<td>[0,0,...,0,1,0,0]</td>
<td>[0,0,...,0,1,0,0]</td>
<td>[0,0,...,0,1,0,0]</td>
<td>[0,0,...,0,1,0,0]</td>
</tr>
</tbody>
</table>

Each vector: (0,0,...,0,1,0,0)

sim("hello","hi") > sim("hello","you")
Neural networks in 30 seconds

• A sequence of simple algebraic functions over vectors and matrices

• **Example**: Predict a how positive is a sentence (regression)

\[\text{vec} \leftarrow \text{vec} - \alpha \frac{\partial \text{loss}}{\partial \text{vec}} \]
\[w \leftarrow w - \alpha \frac{\partial \text{loss}}{\partial w} \]
AST paths: a general method to represent code in machine learning models

```
while (!done) {
    if (someCondition()) {
        done = true;
    }
}
```

Code snippet represented as a set of all its syntactic paths
Key idea #1: encoding with path-attention

(source1, path, target1)

(source2, path, target2) → (, ,)

(source_n, path, target_n)

Bag of contexts

Use embeddings to represent each path as vector in \(\mathbb{R}^{3d} \)
(concatenation of 3 vectors in \(\mathbb{R}^{d} \))

Fully-connected layer
\(\mathbb{R}^{3d} \rightarrow \mathbb{R}^{d} \)

Fully-connected layer
\(\mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \)

prediction
boolean f(Object target) {
 for (Object elem: this.elements) {
 if (elem.equals(target)) {
 return true;
 }
 }
 return false;
}

Object f(int target) {
 for (Object elem: this.elements) {
 if (elem.hashCode().equals(target)) {
 return elem;
 }
 }
 return this.defaultValue;
}

Prediction
contains
matches
equals
containsExact
containsAll

Prediction
get
getProperty
getValue
getElement
getObject
Works great, but

• Monolithic labels
• Monolithic paths
• Huge vocabulary

• How can we do better?
Long Short-Term Memory (LSTM)

- A kind of Recurrent Neural Networks
 - Input: vector
 - Updates its internal memory vector
 - Output: vector

- Input: a sequence of vectors
- Output: a sequence of vectors

- Extremely good at learning sequences
- The basis for (almost) any model that learns sequences (e.g., machine translation, speech recognition, image captioning...)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Key idea #2: efficient encoding of paths

```
int countOccurrences(String str, char ch) {
    int num = 0;
    int index = -1;
    do {
        index = str.indexOf(ch, index + 1);
        if (index >= 0) {
            num++;
        }
    } while (index >= 0);
    return num;
}
```

```
int countOccurrences(String source, char value) {
    int count = 0;
    for (int i = 0; i < source.length(); i++) {
        if (source.charAt(i) == value) {
            count++;
        }
    }
    return count;
}
```
Encode paths using an LSTM that "walks" on the AST

k(=200) contexts are randomly sampled every iteration
Code Completion
Recurrent neural networks (RNNs)

- Capture regularities of code in a language model: predict next “letter”
- Sentence can be anything: Character-level, token-level, sequence of API calls

```java
while (!done) {
    if (someCondition()) {
        doStuff();
        done = true;
    }
}
```

- Capture regularities of code in a language model: predict next “letter”
- Sentence can be anything: Character-level, token-level, sequence of API calls
Learning effort
(amount of training data, time, ...)

Implicitly re-learn language syntax

Program analysis effort
(semantic depth)

Language-specific / task specific

Program text

AST based

Semantic analysis

Dependence graphs

...
RNNs are awesome!

• Using LSTMs/GRUs to capture regularity of code in programs
• LSTMs/GRUs work well, but sometimes surprise us

• What do they actually learn?
 • Important to understand, especially when things go wrong
 • E.g., misclassification – can we provide examples that improve the net?

• What can they actually learn?
What has a network actually learned?
What has a network learned?

valid email addresses
40,000 training samples
2,000 test samples

Training
(100% accuracy on train, reached 100% also on test)

RNN

abc@sc.net
blbl@df.com
sf.se@sdf.co.uk
..@.co.
dasd@@.vim
b.net

But has it really learned to recognize valid email addresses?
What has a network learned?

valid email addresses
40,000 training samples
2,000 test samples

Training
(100% accuracy on train, reached 100% also on test)

RNN

abc@sc.net
blbl@df.com
sf.se@sdf.co.uk
..@.co.
dasd@@.vim
b.net

25.net
5x.nem
2hs.net
How can we find these flaws?

Valid email addresses
40,000 training samples
2,000 test samples

Training
(100% accuracy on train, reached 100% also on test)

RNN

abc@sc.net
blbl@df.com
sf.se@sdf.co.uk
..@.co.
dasd@@.vim
b.net

25.net
5x.nem
2hs.net
Setting: back to basics

• What happens if we train on a regular source?

• Learning regular languages
 • Train network for classification of words in a regular language
 • Try to extract a DFA that captures what the network has learned
Idea #0: Exhaustively explore net from initial state

- Consider outputs of recurrent units as “states”
- Explore net from initial state under inputs of increasing length
- Hope that (continuous) “states” start repeating
 - Net was trained on words from DFA
Exploring toy example

Initial State

- **Input = aab**
- Converted to one-hot-vectors: (1,0),(1,0),(0,1)
Exploring toy example

Input = aab
converted to one-hot-vectors: (1,0),(1,0),(0,1)
Exploring toy example

Input = aab
converted to one-hot-vectors: (1,0),(1,0),(0,1)

Initial State: (0,0)

Input alphabet: {a,b}
Exploring toy example

Input alphabet: {a,b}

Initial State: (0,0)

Input = aab
converted to one-hot-vectors: (1,0),(1,0),(0,1)
Exploring toy example

Initial State

RNN cell

RNN cell

RNN cell

Input = aab
converted to one-hot-vectors: (1,0),(1,0),(0,1)

Input alphabet: {a,b}

Initial State: (0,0)
Exploring toy example

Input = aab
converted to one-hot-vectors: (1,0),(1,0),(0,1)

Initial State

RNN cell
0

RNN cell
0

RNN cell
1,0

RNN cell
1,0

Input alphabet: {a,b}

Initial State: (0,0)
Exploring toy example

Initial State

Input = aab
converted to one-hot-vectors: (1,0),(1,0),(0,1)

Label Accept/Reject using hidden-to-output cell
Ideally...

Input alphabet: \{a, b\}
Initial State: (0,0)
In reality... potentially infinite unrolling

Values of state vectors do not actually repeat...
Hopefully, these can be **abstracted** into equivalent states.
Idea #1: fixed quantization [Omlin&Giles ‘92]

- Partition space and consider “close values” for outputs as same state

- Abstraction by quantization constant q, partitioning each dimension to equal parts
 - $q = 3$ induces 3^N discrete states (N neurons)
 - Easy to see where this is headed for large values of N

- Induces an “abstract automaton”
Exploring abstract automaton (fixed quantization abstraction)
Exploring abstract automaton (fixed quantization abstraction)

Input alphabet: \{a,b\}
Initial State: (0,0)
Exploring abstract automaton (fixed quantization abstraction)

Input alphabet: \{a,b\}
Initial State: (0,0)
Can easily go wrong...

This unrolled automaton will not represent the network at all well.
Refinement quickly leads to explosion

Input alphabet: \{a,b\}
Initial State: \((0,0)\)

Not practical
Our approach: Use L* with abstract teacher

• Learner maintains a hypothesized DFA A and refines it by posing queries to the teacher

• Teacher has to answer two kinds of queries
 • Membership query: $w \in L$?
 • Equivalence query: $L(A) = L$?

• Algorithm guaranteed to return minimal DFA

Synthesis of interface specifications for Java classes [Alur et al., POPL 05]
L* [Angluin, 1987] Refresher

Concept known to teacher $\varepsilon | a(a|b)^* a|b(a|b)^* b$
Exact learning with **abstract teacher**

- *Abstraction of the neural net as the teacher* (oracle)
 - Teacher *may be wrong due to abstraction*

- Membership queries are easy
 - *Run the network* on the given example and return accept/reject
 - Membership queries are *precise*
 - use the network directly
 - no abstraction

- Equivalence queries?
Equivalence queries

• Check equivalence between hypothesized automaton A and abstract automaton

• Use hypothesized automaton A to **guide construction of abstract automaton from the RNN**

• Two possible outcomes
 • Exploration terminates **without conflict** between network and A – the hypothesized automaton A is **equivalent** to the RNN representation
 • A **conflict** is detected between a state in A and a state of the network
Our Approach - Equivalence Queries

Check equivalence of partitioning-induced DFA and of L* DFA

Our Approach - Equivalence Queries

Check equivalence of partitioning-induced DFA and of L* DFA
Our Approach - Equivalence Queries

Check equivalence of partitioning-induced DFA and of L^* DFA

Disagreements are checked by RNN for ground truth
Our Approach - Equivalence Queries

Check equivalence of partitioning-induced DFA and of \(L^* \) DFA

Disagreements are checked by RNN for ground truth
Check equivalence of partitioning-induced DFA and of L* DFA

Disagreements are checked by RNN for ground truth

Our Approach - Equivalence Queries

Check equivalence of partitioning-induced DFA and of L* DFA

Disagreements are checked by RNN for ground truth
Our Approach - Equivalence Queries

Check equivalence of partitioning-induced DFA and of L* DFA

Disagreements are checked by RNN for ground truth
Our Approach - Equivalence Queries

Check equivalence of partitioning-induced DFA and of L* DFA

Disagreements are checked by RNN for ground truth
If RNN and L* disagree, a counterexample is returned.
Our Approach - Equivalence Queries

Check equivalence of partitioning-induced DFA and of L* DFA
Disagreements are checked by RNN for ground truth
If RNN and L* disagree, a counterexample is returned.
Our Approach - Equivalence Queries

Check equivalence of partitioning-induced DFA and of L^* DFA

Disagreements are checked by RNN for ground truth.
If RNN and L^* disagree, a counterexample is returned.
Our Approach - Equivalence Queries

Check equivalence of partitioning-induced DFA and of L* DFA
Disagreements are checked by RNN for ground truth
If RNN and L* disagree, a **counterexample** is returned.
Otherwise, the partitioning is refined
Our Approach - Equivalence Queries

Check equivalence of partitioning-induced DFA and of L* DFA
Disagreements are checked by RNN for ground truth
If RNN and L* disagree, a **counterexample** is returned.
Otherwise, **the partitioning is refined**
Our Approach - Equivalence Queries

Check equivalence of partitioning-induced DFA and of L^* DFA
Disagreements are checked by RNN for ground truth
If RNN and L^* disagree, a **counterexample** is returned.
Otherwise, the partitioning is refined
Our Approach - Equivalence Queries

Check equivalence of partitioning-induced DFA and of L* DFA

Disagreements are checked by RNN for ground truth
If RNN and L* disagree, a **counterexample** is returned.
Otherwise, the partitioning is refined
Our Approach - Equivalence Queries

Check equivalence of partitioning-induced DFA and of L^* DFA

Disagreements are checked by RNN for ground truth
If RNN and L^* disagree, a counterexample is returned.
Otherwise, the partitioning is refined
Our Approach - Equivalence Queries

Check equivalence of partitioning-induced DFA and of L^* DFA

Disagreements are checked by RNN for ground truth
If RNN and L^* disagree, a counterexample is returned.
Otherwise, the partitioning is refined
Our Approach - Equivalence Queries

Check equivalence of partitioning-induced DFA and of L^* DFA

Disagreements are checked by RNN for ground truth

If RNN and L^* disagree, a **counterexample** is returned.

Otherwise, the partitioning is refined
Applications

• Concise, **exact models** from noisy, **partial data** (didn’t previously exist!)
• Test trained RNNs (**adversarial examples**)
• **Knowledge Extraction** (e.g., for NLP)
Results: concise, exact models in short time

```
def target(w):
    if len(w)==0:
        return True
    return w[0]==w[-1]

alphabet = "abcd"
```

Training

(4,400 samples to 100% accuracy)

RNN

Extraction

0.2 sec
Results: adversarial examples

• **GRU** trained to accuracy 100% on training set containing balanced parentheses up to depth 11, over alphabet (,a,b,c,...,z

```plaintext
)) (0.4s)
((i)ma (32.6s)
))) (1.1s)
(() (1.2s)
(((() (2.1s)
((((() (3.1s)
(((((() (3.8s)
(((((())) (9.2s)
((((((v())))) (10.7s)
((((((a()z)))))) (8.3s)
```
What do RNNs actually learn?

• Novel extraction algorithm using abstraction and exact learning to interpret behaviour of RNNs
 • Dynamic abstraction guided by interaction with exact learning algorithm, L*
 • First application of exact learning to a trained RNN

• Creates accurate and concise automata for trained RNNs

• Quickly discovers adversarial inputs for seemingly perfect RNNs (this happens frustratingly often...!)
What can RNNs actually learn?

Proof requires infinite precision
"push 0 into stack": \(g = g/4 + 1/4 \)
this allows pushing 15 zeros when using 32 bit floating point.

Construction requires complex integration of carefully crafted components

can this really be reached by gradient methods?

Construction requires extra processing time at the end of the sequence

we use "real time" RNNs in practice

Classical result: RNNs are Turing complete
(a) $a^n b^n$-LSTM on $a^{1000} b^{1000}$

(b) $a^n b^n c^n$-LSTM on $a^{100} b^{100} c^{100}$

(c) $a^n b^n$-GRU on $a^{1000} b^{1000}$

(d) $a^n b^n c^n$-GRU on $a^{100} b^{100} c^{100}$
LSTM equations

\[
\begin{align*}
 f_t &= \sigma(W^f x_t + U^f h_{t-1} + b^f) \\
 i_t &= \sigma(W^i x_t + U^i h_{t-1} + b^i) \\
 o_t &= \sigma(W^o x_t + U^o h_{t-1} + b^o) \\
 \tilde{c}_t &= \tanh(W^c x_t + U^c h_{t-1} + b^c) \\
 c_t &= f_t \odot c_{t-1} + i_t \odot \tilde{c}_t \\
 h_t &= o_t \odot g(c_t)
\end{align*}
\]

Can make 1 via sigmoid

Exposes counter value
GRU Equations

\[
z_t = \sigma(W^z x_t + U^z h_{t-1} + b^z)
\]

\[
r_t = \sigma(W^r x_t + U^r h_{t-1} + b^r)
\]

\[
\tilde{h}_t = \tanh(W^h x_t + U^h (r_t \circ h_{t-1}) + b^h)
\]

\[
h_t = (z_t \circ h_{t-1} + (1 - z_t) \circ \tilde{h}_t)
\]
In the paper [ACL’18]

• RNNs as simplified k-counter machines
• Results comparing different architectures
 • SRNN/IRNN
 • GRU/LSTM
• Proof that SRNN/GRUs cannot implement a binary counter
Summary

code2vec
A (somewhat) interpretable model for predicting program properties

What can RNNs learn?

Extraction from RNN to DFA

boolean Object (target) {
 for (Object elem: this.elements) {
 if (elem.equals(target)) {
 return true;
 }
 }
 return false;
}