

The VTune™ Performance Analyzer
Reader/Writer API (TBRW)

User Guide

Copyright © 2008 Intel Corporation

All Rights Reserved

Document Number: 320237-001US

Revision: 2.2

World Wide Web: http://www.intel.com

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

Disclaimer and Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL

OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND

CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED

WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN

WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or

characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no

responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without

notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from

published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-

548-4725, or by visiting Intel's Web Site.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across

different processor families. See http://www.intel.com/products/processor_number for details.

This document contains information on products in the design phase of development.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino Inside, Centrino logo, Core Inside, FlashFile, i960,

InstantIP, Intel, Intel logo, Intel386, Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside, Intel Inside

logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel

StrataFlash, Intel Viiv, Intel vPro, Intel XScale, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool,

Sound Mark, The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon, and Xeon Inside are trademarks of Intel Corporation in the U.S. and other

countries.

* Other names and brands may be claimed as the property of others.

Copyright (C) 2008, Intel Corporation. All rights reserved.

Revision History

Document
Number

Revision
Number

Description Revision Date

320237-001 2.2 Initial release. July 2008

2 Document Number: 320237-001US

http://www.intel.com/

About this Document

Contents
1 About this Document.. 8

1.1 Intended Audience ..8
1.2 Contents of the TBRW Package ...8

1.2.1 TBRW Binaries ...9
1.2.2 TBRW Headers...9

1.3 Goals ..9
1.3.1 API Standard ...10

1.4 Conventions and Symbols ..10

2 TBRW Examples.. 11
2.1 print_tb5 ..11
2.2 tbrw_reader ...11
2.3 tbrw_writer ..11
2.4 Building Examples...12

2.4.1 Building Examples on Windows* OS ...12
2.4.2 Building Examples on Linux* OS ...12

2.5 Running the Examples..14

3 Overview ... 15
3.1 Concepts ..15

3.1.1 Definitions..15
3.2 TB5 File Sections...16

3.2.1 Global Sections..16
3.2.2 Data Stream Sections...17

3.3 What Does “binding” Mean?...19
3.4 Known Limitations ..20

4 Usage Model.. 21
4.1 Single Data Stream...21
4.2 Single Data Stream With Custom Data...21
4.3 Multiple Data Stream With Custom Data ..21

5 Accessing a VTune™ Performance Analyzer File... 23
5.1 Writing a Global Section ...24
5.2 Writing a Data Stream..24
5.3 Writing Stream Section ..24
5.4 Writing Data With a “set_” or “add_” Function ..25
5.5 Reading a Global Section ...25
5.6 Reading a Raw Data Stream ..25
5.7 Reading a Stream Section..26
5.8 Reading Data with a “get_” Function ..26
5.9 Reading Data With the enumerate_ Function...27
5.10 Binding and Unbinding a Data Stream..29

User Guide 3

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

5.11 Handling Errors ...29

6 Writing VTune™ Performance Analyzer Compatible Files................................. 31
6.1 How Bind Works ..31
6.2 Sampling Data Descriptors...31
6.3 Sample Record Data Structure ..32
6.4 Required Sections ...33
6.5 64-bit Samples vs. 32-bit Samples ...34

7 FAQ.. 35
7.1 The os_platform field in the TBRW_OS structure is an integer and described as

an enumerated type. Do we use a generic "other" indicator ?35
7.2 32 bit PIDs will not be sufficient for 64 bit OS, should be TBRW_U64.35
7.3 Same applies for TID ..35
7.4 In TBRW_VERSION_INFO structure, what value should we use for the

sampling_driver field? Do we use "other"?...36
7.5 Event mapping will require a bit more detail. I don't see much I recognize36
7.6 Why does my call to TBRW_convert_uniqueid_to_string() sometimes return an

"invalid string" error? Is this expected? ..36
7.7 Where can I find a list of error return codes? ..36

8 API Data Structure Reference .. 37
8.1 Basic Types..37
8.2 Section Identifiers...38
8.3 Hardware Structures...38
8.4 Software Structures..41
8.5 Process/Thread Structures ...42
8.6 Module Structure...43
8.7 Version Information Structure ...44
8.8 Stream Information Structure ...44
8.9 Stream Types ..45
8.10 Event Descriptor ...45
8.11 Data Descriptor ...46
8.12 Bind Structure ...51

9 API Function Reference .. 53
9.1 High Level Functions...53

TBRW_U32 TBRW_get_version(OUT TBRW_U32 *major, OUT TBRW_U32
*minor) ..53

TBRW_U32 TBRW_open(OUT TBRW_PTR *ptr, IN const TBRW_CHAR
*filename, IN TBRW_U32 access_mode)..53

TBRW_U32 TBRW_close (IN TBRW_PTR ptr) ...53
TBRW_U32 TBRW_error_string(IN TBRW_U32 error_code, OUT const

TBRW_CHAR **error_string) ...54
TBRW_U32 TBRW_abort_cleanup_and_close(IN TBRW_PTR ptr)54
TBRW_U32 TBRW_verify (IN TBRW_PTR ptr) ..54
TBRW_U32 TBRW_convert_uniqueid_to_string(IN TBRW_PTR ptr, IN

TBRW_U32 size_of_buffer, IN TBRW_STRING_OR_ID *string_id, OUT
TBRW_CHAR *buffer, OPTIONAL OUT TBRW_U32
*size_buffer_needed) ...54

4 Document Number: 320237-001US

About this Document

9.1.1 Global Section Management...55
TBRW_U32 TBRW_reading_section(IN TBRW_PTR ptr, IN

TBRW_SECTION_IDENTIFIER section)..55
TBRW_U32 TBRW_writing_section(IN TBRW_PTR ptr, IN

TBRW_SECTION_IDENTIFIER section)..55
TBRW_U32 TBRW_done_section(IN TBRW_PTR ptr, IN

TBRW_SECTION_IDENTIFIER section)..55
9.1.2 Data Stream Management ...56
TBRW_U32 TBRW_get_number_data_streams(IN TBRW_PTR ptr, OUT

TBRW_U32 *numStreams) ..56
TBRW_U32 TBRW_reading_stream(IN TBRW_PTR ptr, IN TBRW_U32 stream)56
TBRW_U32 TBRW_writing_stream(IN TBRW_PTR ptr, IN TBRW_U32 stream) 56
TBRW_U32 TBRW_done_stream(IN TBRW_PTR ptr, IN TBRW_U32 stream)....56
9.1.3 Data Stream Section Management..56
TBRW_U32 TBRW_reading_stream_section(IN TBRW_PTR ptr, IN TBRW_U32

stream, TBRW_STREAM_SECTION_IDENTIFIER section)....................56
TBRW_U32 TBRW_writing_stream_section(IN TBRW_PTR ptr, IN TBRW_U32

stream, TBRW_STREAM_SECTION_IDENTIFIER section)....................57
TBRW_U32 TBRW_done_stream_section(IN TBRW_PTR ptr, IN TBRW_U32

stream, TBRW_STREAM_SECTION_IDENTIFIER section)....................57
9.2 Global Section Access ...57

9.2.1 Hardware section ..57
TBRW_U32 TBRW_ set_system(IN TBRW_PTR ptr, IN TBRW_SYSTEM

*system)..57
TBRW_U32 TBRW_ get_system(IN TBRW_PTR ptr, IN TBRW_U32

size_of_buffer, OUT TBRW_SYSTEM *buf_ptr, OPTIONAL OUT
TBRW_U32 *size_buffer_used) ...57

9.2.2 Software Section ...58
TBRW_U32 TBRW_set_host(IN TBRW_PTR ptr, IN TBRW_HOST *host)...........58
TBRW_U32 TBRW_get_host(IN TBRW_PTR ptr, IN TBRW_U32 size_of_buffer,

IN void *buf_ptr, OPTIONAL OUT TBRW_U32 *size_buffer_used).....58
TBRW_U32 TBRW_set_os(IN TBRW_PTR ptr, IN TBRW_OS *os)58
TBRW_U32 TBRW_get_os(IN TBRW_PTR ptr, IN TBRW_U32 size_of_buffer, IN

void *buf_ptr, OPTIONAL OUT TBRW_U32 *size_buffer_used)..........58
TBRW_U32 TBRW_set_application(IN TBRW_PTR ptr, IN TBRW_APPLICATION

*application)..58
TBRW_U32 TBRW_get_application(IN TBRW_PTR ptr, IN TBRW_U32

size_of_buffer, IN void *buf_ptr, OPTIONAL OUT TBRW_U32
*size_buffer_used) ...58

9.2.3 Process/Thread Section ..59
TBRW_U32 TBRW_add_process(IN TBRW_PTR ptr, IN TBRW_PID *process) ..59
TBRW_U32 TBRW_get_one_pid(IN TBRW_PTR ptr, IN TBRW_U64 pid_index,

OUT const TBRW_PID **p_pid) ...59
TBRW_U32 TBRW_enumerate_processes(IN TBRW_PTR ptr, IN

TBRW_PID_CALLBACK *callback_func, IN void *user_ptr, IN
TBRW_U64 start_index) ...59

TBRW_U32 TBRW_add_thread(IN TBRW_PTR ptr, IN TBRW_TID *thread)......59
TBRW_U32 TBRW_get_one_tid(IN TBRW_PTR ptr, IN TBRW_U64 tid_index,

OUT const TBRW_TID **p_tid)..59
TBRW_U32 TBRW_enumerate_threads(IN TBRW_PTR ptr, IN

TBRW_TID_CALLBACK *callback_func, IN void *user_ptr, IN
TBRW_U64 start_index) ...59

TBRW_U32 TBRW_bind_enumerate_threads(IN TBRW_PTR ptr, IN
BIND_TID_CALLBACK *callback_func, IN void *user_ptr, IN
TBRW_U64 start_index) ...60

User Guide 5

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

TBRW_U32 TBRW_get_size_of_tid_bind_entry(IN TBRW_PTR ptr, IN
TBRW_U32 data_stream, OUT TBRW_U32 *sizeof_tid_bind_entry) ..60

9.2.4 Module Section ..60
TBRW_U32 TBRW_add_module(IN TBRW_PTR ptr, IN TBRW_MODULE

*module) ...60
TBRW_U32 TBRW_get_one_module(IN TBRW_PTR ptr, IN TBRW_U64

module_index, OUT const TBRW_MODULE **p_module)60
TBRW_U32 TBRW_enumerate_modules(IN TBRW_PTR ptr, IN

TBRW_MODULE_CALLBACK *callback_func, IN void *user_ptr, IN
TBRW_U64 start_index) ...60

TBRW_U32 TBRW_bind_enumerate_modules(IN TBRW_PTR ptr, IN
BIND_MODULE_CALLBACK *callback_func, IN void *user_ptr, IN
TBRW_U64 start_index) ...61

TBRW_U32 TBRW_get_size_of_module_bind_entry(IN TBRW_PTR ptr, IN
TBRW_U32 data_stream, OUT TBRW_U32
*sizeof_module_bind_entry)..61

9.2.5 Version Information Global Section...61
TBRW_U32 TBRW_set_version_info(IN TBRW_PTR tbrw_ptr, IN

TBRW_VERSION_INFO *version_info) ..61
TBRW_U32 TBRW_get_version_info(IN TBRW_PTR tbrw_ptr, IN TBRW_U32

size_of_buffer, IN void *buf_ptr, OPTIONAL OUT TBRW_U32
*size_buffer_used) ...61

9.2.6 User-defined Global Section...61
TBRW_U32 TBRW_set_user_defined_global(IN TBRW_PTR ptr, IN TBRW_U32

size_of_data, IN void *data_ptr)...61
TBRW_U32 TBRW_get_user_defined_global(IN TBRW_PTR ptr, IN TBRW_U32

size_of_buffer, IN void *buf_ptr, OPTIONAL OUT TBRW_U32
*size_buffer_used) ...62

9.3 Stream Section Access ...62
9.3.1 Stream Information Section...62
TBRW_U32 TBRW_get_stream_info(IN TBRW_PTR tbrw_ptr, IN TBRW_U32

stream, IN TBRW_U32 size_of_buffer, IN void *buf_ptr, OPTIONAL
OUT TBRW_U32 *size_buffer_used) ...62

TBRW_U32 TBRW_set_stream_info(IN TBRW_PTR tbrw_ptr, IN TBRW_U32
stream, IN TBRW_STREAM_INFO *stream_info)62

9.3.2 Event Description Section ..62
TBRW_U32 TBRW_add_event(IN TBRW_PTR ptr, IN TBRW_U32 stream, IN

TBRW_EVENT *event_descriptor_entry) ..62
TBRW_U32 TBRW_enumerate_events(IN TBRW_PTR ptr, IN TBRW_U32

stream, IN TBRW_EVENT_CALLBACK *callback_func, IN void
*user_ptr, IN TBRW_U64 start_index) ...63

9.3.3 Data Description Section ..63
TBRW_U32 TBRW_add_data_descriptor_entry(IN TBRW_PTR ptr, IN

TBRW_U32 stream, IN TBRW_SAMPREC_DESC_ENTRY
*data_descriptor_entry)...63

TBRW_U32 TBRW_enumerate_data_descriptor_entries(IN TBRW_PTR ptr, IN
TBRW_U32 stream, TBRW_DATA_DESC_CALLBACK *callback_func,
void *user_ptr) ...63

9.3.4 Data Section ..63
TBRW_U32 TBRW_add_data(IN TBRW_PTR ptr, IN TBRW_U32 stream, IN

TBRW_U32 size_of_data_entry, IN void *data_entry)........................63
TBRW_U32 TBRW_add_data_from_file(IN TBRW_PTR ptr, IN TBRW_U32

stream, TBRW_CHAR *filename)...63

6 Document Number: 320237-001US

About this Document

TBRW_U32 TBRW_enumerate_data(IN TBRW_PTR ptr, IN TBRW_U32 stream,
IN TBRW_DATA_CALLBACK *callback_func, IN void *user_ptr, IN
TBRW_U64 start_index) ...64

TBRW_U32 TBRW_bind_enumerate_data(IN TBRW_PTR ptr, IN TBRW_U32
data_stream, IN BIND_DATA_CALLBACK *callback_func, IN void
*user_ptr, IN TBRW_U64 start_index,) ..64

TBRW_U32 TBRW_get_size_of_data_bind_entry(IN TBRW_PTR ptr, IN
TBRW_U32 data_stream, OUT TBRW_U32 *sizeof_data_bind_entry)64

TBRW_U32 TBRW_is_bound(IN TBRW_PTR ptr, IN TBRW_U32 data_stream
OUT TBRW_U32 *is_bound) ..64

TBRW_U32 TBRW_dobind(IN TBRW_PTR ptr, IN TBRW_U32 data_stream).....65
TBRW_U32 TBRW_unbind(IN TBRW_PTR ptr, IN TBRW_U32 data_stream).....65
9.3.5 User-defined stream section ..65
TBRW_U32 TBRW_set_user_defined_stream(IN TBRW_PTR ptr, IN TBRW_U32

stream, IN TBRW_U32 size_of_data, IN void *data_ptr)....................65
TBRW_U32 TBRW_get_user_defined_stream(IN TBRW_PTR ptr, IN TBRW_U32

stream, IN TBRW_U32 size_of_buffer, IN void *buf_ptr, OPTIONAL
OUT TBRW_U32 *size_buffer_used) ...65

9.4 String Conversion Utility Functions ...65
TBRW_U32 TBRW_convert_utf8_to_wcs (IN const char *utf8, OUT wchar_t

*wcs, INOUT TBRW_U32 *wcs_size);...65
TBRW_U32 TBRW_convert_wcs_to_utf8 (IN const wchar_t *wcs, OUT char

*utf8, INOUT TBRW_U32 *utf8_size);..66
9.5 Callback Functions ..66

TBRW_U32 (*TBRW_DATA_CALLBACK)(void *data, TBRW_U32 data_size,
TBRW_U32 num_entries, void *user_ptr);...66

TBRW_U32 (*TBRW_PID_CALLBACK)(TBRW_PID *pid, TBRW_U32
pid_data_size, TBRW_U32 num_entries, void *user_ptr);66

TBRW_U32 (*TBRW_TID_CALLBACK)(TBRW_TID *tid, TBRW_U32
tid_data_size, TBRW_U32 num_entries, void *user_ptr);67

TBRW_U32 (*TBRW_MODULE_CALLBACK)(TBRW_MODULE *module,
TBRW_U32 module_data_size, TBRW_U32 num_entries, void
*user_ptr); ..67

TBRW_U32 (*TBRW_EVENT_CALLBACK)(TBRW_EVENT *event, TBRW_U32
event_data_size, TBRW_U32 num_entries, void *user_ptr);.............67

TBRW_U32 (*TBRW_DATA_DESC_CALLBACK)(TBRW_SAMPREC_DESC_ENTRY
*data_desc, TBRW_U32 data_desc_size, TBRW_U32 num_entries,
void *user_ptr); ..67

10 Usage Example ... 68
10.1 Writing a Stream Section ...68

User Guide 7

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

1 About this Document
This VTune Performance Analyzer™ reader/writer API (TBRW) enables developers to
read and write persisted data in an on-disk format that is compatible with the VTune™
Performance Analyzer. This API supports tb5 files, version 16 and higher.

1.1 Intended Audience
Read this document if you are interested in reading and writing persisted data in a
VTune analyzer compatible on-disk format.

1.2 Contents of the TBRW Package
The TBRW package contains the following list of directories.

The VTune TBRW (Tb5 Read Write) related files are located in the Intel VTune analyzer
installation directory structure as shown below.

+ analyzer

 + bin. (TBRW binaries tbrw.dll/libtbrw.so or

 | sampling_utils.dll/libsampling_utils.so)

 + include

 + samprec_shared.h (TBRW header with data description enumerations)

 + tbrw.h (TBRW header with TBRW API)

 + tbrw_types.h (TBRW header wiht TBRW data types)

 + lib (TBRW libraries tbrw.lib and sampling_utils.lib on Windows)

+ examples (example programs)

 + TBRW (TBRW examples)

 + TBRWExamples.sln (Microsoft* Visual Studio* 2005 solution file to

 | build TBRW examples on Windows* OS)

 + linux_setenv environment for building examples on Linux* OS)

 + Makefile (makefile for building examples on Linux)

 + print_tb5.cpp (example program to print tb5 content)

 + tbrw_reader.cpp (example program to read tb5 and generate data for

 | tbrw_writer program)

 + tbrw_writer.cpp (example program to simulate creation of tb5 data

 | file using TBRW API, uses tbrw_reader data)

 + tbrw_print (Visual Studio project file for building tbrw_print)

 + tbrw_reader (Visual Studio project file for building tbrw_reader)

 + tbrw_writer (Visual Studio project file for building tbrw_writer)

8 Document Number: 320237-001US

About this Document

 + sample.tb5 (A sample tb5 data file)

+ doc

 + TBRW.pdf (TBRW API documentation)

1.2.1 TBRW Binaries
The bin folder in the TBRW package contains the TBRW binaries for respective
platform/architecture combination.

You need to link to these binaries to use the TBRW API.

Linux* OS libtbrw.so - contains TBRW API (IA-32)

libsampling_utils.so - contains utility API used by TBRW

Window* OS tbrw.lib and tbrw.dll - TBRW binary dll, contains TBRW API

sampling_utils.lib and sampling_utils.dll - Contains utility API used by
TBRW

1.2.2 TBRW Headers
The include folder in the VTune installation contains the header files required to use
TBRW API.

You need to include tbrw.h and samprec_shared.h.

The tbrw.h header file contains the API declarations exposed by TBRW and the TBRW
data structures that are used in the TBRW API interface.

The samprec_shared.h contains the list of data descriptor types that can be used in
writing the data section of a tb5 file. See 6Writing VTune™ Performance Analyzer
Compatible Files for more information.

1.3 Goals
This document enables you to do the following:

Provide sampling data to the VTune analyzer in a way that the analyzer can interpret
it.

•

•

•

•

Define the sample record to best meet your needs (constrained by (1) above)

Define the size of a sample record on a per-data stream basis.

Add data to a current “section”. However, once a section is “done” no more data can
be added to that section.

User Guide 9

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

1.3.1 API Standard
The smallest granularity for defining a data field in a sample record is one byte. •

•

•

Any file that is written via this API is validated in some form to minimize the
possibility of accidentally persisting data that cannot be read or manipulated by the
VTune analyzer.

All strings are Unicode strings.

1.4 Conventions and Symbols
The following conventions are used in this document.

Table 1 Conventions and Symbols used in this Document

This type
style

Indicates an element of syntax, reserved word, keyword, filename, computer
output, or part of a program example. The text appears in lowercase unless
uppercase is significant.

This type style Indicates the exact characters you type as input. Also used to highlight the
elements of a graphical user interface such as buttons and menu names.

This type style Indicates a placeholder for an identifier, an expression, a string, a symbol, or a
value. Substitute one of these items for the placeholder.

[items]

Indicates that the items enclosed in brackets are optional.

{ item | item } Indicates to select only one of the items listed between braces. A vertical bar (|)
separates the items.

10 Document Number: 320237-001US

TBRW Examples

2 TBRW Examples
The installation contains three sample programs in the examples/TBRW folder that
demonstrate the TBRW API usage.

2.1 print_tb5
This program reads the data from the provided tb5 file and prints the data for each
section of the tb5 file.

Usage
print_tb5 <tb5filename>

Where <tb5filename> is the name of the tb5 file to be read.

2.2 tbrw_reader
This program reads the data from the provided tb5 file and creates two binary data files.
This program also creates another binary data file that only contains the sampling data
section.

The first file contains the binary data of each section of the TBRW data file. •

• The second file contains the binary data from the data section of the TBRW file. The
second file is referred by the first file.

These two files are used by the tbrw_writer program as input to create a tb5 file.

Usage
tbrw_reader <unbound tb5 file> <output file name>

Where

<unbound tb5 file> is the name of the tb5 file from which data needs to be read.

<output file name> is the file into which the tb5 data is written.

2.3 tbrw_writer
This program demonstrates the usage of TBRW API to create a tb5 file. Since the
example does not perform any real collection of the data, the output from

User Guide 11

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

tbrw_reader is used as input data. The tbrw_reader program can read an existing
tb5 file and produce the binary data consumable by tbrw_writer program. The
tbrw_writer program produces a new tb5 file.

Usage
tbrw_writer.exe <input_data_file_name> <tb5_file_name>

Where

<input_data_file_name> is name of the file that contains the sampling binary data.

<tb5_file_name> is the output tb5 file that is written with the tb5 sections.

2.4 Building Examples
This section explains how to build examples on Windows and Linux operating systems

2.4.1 Building Examples on Windows* OS
1. Go to examples\TBRW folder.

2. Double click TBRWExamples.sln to open the examples solution in Visual Studio

2005.

This workspace contains three projects - print_tb5, tbrw_reader and

tbrw_writer.

3. Select the build configuration and build the projects. Make sure that tbrw.lib

binary and the header file paths are included in the Solution include/lib

directories.
The executables for the example binaries are located under
examples/TBRW/<PlatformName>/<Debug|Release> folder

Where <PlatformName> is Win32 or x64 or Itanium, depending on the architecture.

2.4.2 Building Examples on Linux* OS
Building the examples on a Linux OS requires the following applications and files:

icc or gcc compiler. To compile with the icc compiler, source the iccvars.sh from
icc compiler installation and modify the USE_COMPILER setting in the Makefile to
"icc".

•

• TBRW header files in $(VTUNE_HOME)/analyzer/include directory and the
binaries from $(VTUNE_HOME)/analyzer/bin directory. On Intel® 64
archtecture, the native TBRW binaries are in:

12 Document Number: 320237-001US

TBRW Examples

${VTUNE_HOME}/rdc/analyzer/bin.The Makefile adds these directories for
compilation.

In addition, there are several conditions that may require specific configurations:

The VTune analyzer installation is performed under root user, therefore building or
running the TBRW examples inside ${VTUNE_HOME}/samples/TBRW directory
requires root user permission. To build/run the examples as a non-root user, copy
the ${VTUNE_HOME}/samples/TBRW directory to a local directory with write
permissions.

•

• If your local gcc library version is not libstdc++.so.5, you need to explicitly add
local library paths to LD_LIBRARY_PATH in the linux_setenv file.
For example, to build and run the examples compiled on IA-32 architecture with gcc
4.x against libstdc++.so.6, you need to add the /lib directory to
LD_LIBRARY_PATH in linux_setenv, before the path to gcc libaries packaged
with the VTune analyzer.

export LD_LIBRARY_PATH=/lib:${VTUNE_HOME}/gcc-
3.3/lib32:${LD_LIBRARY_PATH}:

On Intel® 64 architecture:

export LD_LIBRARY_PATH=/lib64:${VTUNE_HOME}/gcc-
3.4/libem64t:${LD_LIBRARY_PATH}:

The VTUNE_HOME variable points to the default VTune analyzer installation home
directory. You need to configure this variable value if the VTune installation directory
is not in the default location.

•

1. Change directory to ${VTUNE_HOME}/samples/TBRW.

2. Run the following command to setup the environment.
$source linux_setenv

3. Run the following commands to perform various make operations
 $make clean ---- to clean the compiled content

 $make all ---- to build all examples

 $make debug ---- to build in debug mode

 $make release ---- to build in release mode

 $make print_tb5 ---- to build a specific example

The executables for the examples are in: ${VTUNE_HOME}/samples/TBRW

To compile and run the examples, you also need the C++ runtime libraries libimf.so,
libcxaguard.so.x and libstdc++.so.x. These are packaged with VTune analyzer
installation and available in:

$(VTUNE_HOME)/gcc-3.4/libXXX (gcc-3.3 for IA-32).

The linux_setenv script adds the appropriate platform specific directories to
LD_LIBRARY_PATH.

User Guide 13

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

2.5 Running the Examples
A sample tb5 file called sample.tb5 is provided in the examples/TBRW folder the
TBRW package.

To run the examples, you need to set the path environment variable on your OS.

On Windows OS:

Copy the sample.tb5 file to the
examples/TBRW/<PlatformName>/<Debug|Release> depending on the
configuration.

•

•

•

•

Add the tbrw.dll file (located in analyzer\bin directory) to the PATH
environment variable.

On Linux OS:

Add the path to the libtbrw.so file (located in analyzer/bin directory) to
LD_LIBRARY_PATH

Add the libimf.so, libcxaguard.so and libstdc++.so binaries to the
LD_LIBRARY_PATH variable. (sourcing linux_setenv file takes care of this)

To print the contents of the tb5 file run the following command. This prints the tb5
section information to the console.

$print_tb5 sample.tb5

To read the tb5 content and create the binary data files useful for tbrw_writer program,
run the following command. This creates two output files: sample.dat,
sample.tb5.dat

$tbrw_reader sample.tb5 sample.dat

To create a tb5 file from the raw input data files use the tbrw_reader. This uses the
sample.dat and sample.tb5.dat files from tbrw_reader run and creates a new tb5
file samplenew.tb5

$tbrw_writer sample.dat samplenew.tb5

14 Document Number: 320237-001US

Overview

3 Overview
The VTune analyzer reader/writer API uses a model similar to file I/O’s
open()/close() where the VTune analyzer reader/writer API open equivalent passes
back an opaque data structure, similar to a file descriptor from an open() call. The data
structure must then be passed to any subsequent VTune analyzer reader/writer API call.

The API includes a function which can be used to translate the VTune analyzer error
numbers into human readable text strings.

Although the VTune analyzer reader/writer API may use exception handling within the
API itself, it does not detect error conditions outside of the API nor the termination of
the process. For example, it does not use signals or atexit() routines. Therefore, the
API needs to be explicitly informed when to abort and cleanup. An API is provided for
that purpose.

After you call the TBRW_open() routine, you must call either the TBRW_close()
routine for normal close, or the TBRW_abort_cleanup_and_close() routine for
exception or abnormal process termination, before the process terminates. Failure to do
so can lead to incomplete or temporary files being left after the program has exited.

The VTune analyzer reader/writer API uses the concept of sections to handle different
types of data. Some sections have very specific requirements regarding what is in them
while others are more free-form. In addition, there is a concept of “global” sections
which contain universal information that is related to the data generation run vs. “local”
sections which contain data which may be specific to only a portion of the run. Sections
are discussed in more detail later in the document.

3.1 Concepts
This section defines concepts that are used throughout the rest of the document.

3.1.1 Definitions
The following table provides some definitions of basic concepts used in this document:

Table 2 Definitions

Definition Description

VTune analyzer The VTune™ Performance Analyzer product

VTune analyzer
reader/writer API

An API for reading and writing VTune analyzer files. Any file that is
written via this API is validated in some form to minimize the possibility of

User Guide 15

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

accidentally persisting data that cannot be read or manipulated by the
VTune analyzer. The persisted data can be larger than the available
virtual memory. You can provide data to the API’s as either pointers to
data in memory or “pointers” to disk files.

sampling data Data collected from a sampling session, also referred to as the data
samples. A single sample is called a sample record.

binding Sampling data needs to be post-processed after collection to make the
data useful. The result of binding is that each data sample is associated
with a module. For more information, see What Does “binding” Mean?

bound data Data that has been through binding is called bound data.

unbound data,
a.k.a. raw data

Sampling data before it has been bound. That is, the module that
triggered the samples collected is not known.

VTune analyzer File,
a.k.a. TB5 file

A file created by the VTune analyzer reader/writer API. Each VTune
analyzer file contains zero or one hardware sections, zero or one software
sections, zero or one process/thread sections, zero or one module
information sections, zero or one user-defined global sections, and zero or
more numbered data streams (the first data stream is number zero). You
can open an existing VTune analyzer file and append a new data stream
(such as an aggregation of an existing data stream). However, you cannot
modify an existing data stream or any of the other existing sections in the
file.

3.2 TB5 File Sections
The TB5 file includes global sections and stream sections. A global section is a section
that is not a stream section.

3.2.1 Global Sections
The global sections are briefly described in the following table. For complete information,
see API Data Structure Reference.

Section Description Required information

Hardware
section

Describes the hardware at the time of
data collection.

Number of nodes, number of
processors per node, physical
memory per node, per processor
architecture, per processor feature
information, number of processors
per package, per processor cache
information, per processor speed,
per processor front-side bus speed,
and timestamp skew between
processors.

Software
section

Describes the software at the time of
data collection.

OS information, hostname, IP
address, page size, allocation
granularity, minimum application

16 Document Number: 320237-001US

Overview

address, and maximum application
address.

Process/thread
section

Used to map the process/thread
information from a sample, back to a
specific process or thread. If the
process/thread section does not exist,
the VTune analyzer can still present
data, but only based on IP. The VTune
analyzer needs the process/thread
section as well as the module section in
order to map IP address back to
symbols, and eventually back to source
code.

Sample count, creation/terminate
indication, process id, process
name, thread id, and thread name.

Module
section

Used to map the module information
from a sample back to a binary image. If
the module section does not exist, the
VTune analyzer can still present data,
but only based on IP. The VTune
analyzer needs the process/thread
section as well as the module section in
order to map IP address back to symbols
and eventually back to source code.

Sample count, load/unload
indication, associated pid, path to
module, module name, module load
address, and module length.

User-defined
global section

This is a free-format section that you
can use to store data. The data in this
section is never interpreted nor used by
the VTune analyzer.

Version
information
global section

Contains information about the versions
of the libraries used to collect and
analyze the data found in the file.

This section contains the sampling
driver version, binding library
version, sample file format version.

3.2.2 Data Stream Sections
A data stream section contains a set of data corresponding to a particular span of time.
Each data stream contains the following elements:

one stream information section •

•

•

•

•

zero or one local user-defined sections

zero or one event description sections

one data section, and

Zero or one data description section that describes the meaning of the data in the
data section.

The first data stream is number zero. Stream zero is reserved for legacy-formatted
sample record information. Attempts to record legacy sample records into streams one
or above results in an error.

User Guide 17

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

The stream sections are briefly described in the following table. For complete information
on the sections, see API Data Structure Reference:

Section Description Information required

Stream
information
section

Contains information on the type
of data in the stream

A comment that describes the data stream
in a human readable form, the type of the
data stream, such as, sampling data or
aggregated data, sampling duration, start
and end times of the sampling session,
command line string, and cpu mask.

User-defined
stream
section

Free format section that you can
use to store data. The data in
this section is never interpreted
nor used by the VTune analyzer.

Data
description
section

Contains one data descriptor
that defines the meaning of the
data in a data section. This
section must exist for the VTune
analyzer to do post-collection
analysis. The VTune analyzer
uses the data descriptor to
determine if certain types of
information are available in the
data samples. In some cases,
when that type of data isn’t
present in the samples, the
VTune analyzer can make a
simplifying assumption and
things continue to work as
expected. For example, if there
is no processor #, the VTune
analyzer can assume a UP
system and assume all samples
came from cpu 0. In other
cases, the VTune analyzer needs
the data to actually do anything
useful for analysis and
presentation. For example, if
there is no ip in the data
samples, there is very little the
VTune analyzer can usefully do
with the data.

Data descriptor – An array of data descriptor
entries that collectively define the meaning
of the data in a single sample.

Data descriptor entry – Defines the meaning
of a unit of data within a sample. The
smallest granularity for defining a unit of
data in a sample is one byte. As long as
certain data descriptor entries exist, the
VTune analyzer can manipulate the
corresponding data for analysis and
presentation.

Examples of data descriptor entries that can
be created include: Instruction pointer,
processor flags (eflags and ipsr), code
segment selector, code segment descriptor,
processor number, sample number, process
id, thread id, privilege mode (user/kernel),
execution mode (16, 32, 64 bit), timestamp
counter, Event Address Registers (EAR’s –
instruction, data, and branch), Precise Event
Buffer (PEB’s) data, general purpose
registers, and event id.

Event
description
section

An array of event descriptor
entries that collectively describe
the events that were used to
collect the data.

Event descriptor entry – Describes one
event. Examples of event descriptive
information include: event id, type of event
(i.e. EBS vs. TBS), event name, sample after
value, and event programming information.
This section must exist if the data
description section includes an “event id”
data descriptor entry.

Data section Contains zero or more data Data entry – A fixed-sized block of data

18 Document Number: 320237-001US

Overview

entries, where the data entries
are all defined by the data
descriptor in the data description
section; all the data entries in a
given data section have the
same fixed size, which is defined
by the user-specified data
descriptor.

whose contents are defined by a given data
descriptor.

3.3 What Does “binding” Mean?
After data collection is done, binding is needed to make the data useful. Binding
associates each sample record with the module, PID, and tid that it belongs to. A sample
record that has not been associated with its module, PID, and tid is called a raw sample
record.

For example, the module record below spans virtual memory address 630E0000 to
630E0000+27000 (i.e. 63107000) in process ID 428. The raw sample record below was
collected while process ID 428 was executing and the instruction pointer of the
processor was 630E5907. Since 630E0000 > 630E5907 < 63107000, the sample was
mapped to the ProjNavigator.dll module in process 428.

Figure 1: Sample Record

00000012 32--001B:630E5907 p-00000428 c-00 t-0000011C sgno-0x00000000 ei-01 +Other32+

Sample count IP pid Module name

00000842 32--001B:630E0000 len-00027000 p-00000428 pi-1064 lc-00000000 sgno=000000
C:\Program Files\Intel\VTune analyzer\Shared\Bin\ProjNavigator.dll

VM load address

Module length

pid

Module Record

Module path and name

User Guide 19

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

Figure 2: Bound Sample Record

00000012 32--001B:630E5907 p-00000428 c-00 t-0000011C sgno-0x00000000 ei-01 ProjNavigator.dll

Sample count IP pid

Bound Sample Record

3.4 Known Limitations
A sample record is a fixed length record. The API does not support sample records
which vary in size between samples. You can do variable sized sample records by
splitting the records into a fixed portion (needed by the VTune analyzer) and a
variable sized portion (which can be placed in the custom area).

•

•

•

•

•

You may not be able to open an existing VTune analyzer data file and append data
to one of the existing data streams.

You may not be able to read/write/append/modify any section at any time.

The persisted format used by the VTune analyzer may or may not be the same data
format that was used by an application that collected the data.

TBRW API supports VTune analyzer version 8.0 and higher

20 Document Number: 320237-001US

Usage Model

4 Usage Model
This section explains the several expected usage models.

4.1 Single Data Stream
Has a single set of data which is used by the VTune analyzer. For example: the current
VTune analyzer

4.2 Single Data Stream With Custom Data
Same as above but has additional user-defined data that is saved along with the
information needed by the VTune analyzer. The VTune analyzer application does not
interpret any data in the user-defined area. It is strictly “extra” stuff that you defined
and use. The writer/reader API returns the custom data without any changes to the data
itself.

For example: you have variable length data and place a “fixed length” portion in the
VTune analyzer compatible data section, and any “variable length” portion in a custom
section.

4.3 Multiple Data Stream With Custom Data
The basic tenant is that VTune analyzer data covers a particular span of time and the
different data streams are either different pieces of data during that time or different
“views” of some particular data during that time.

For example, while capturing data, the format of the data can change or there can be
two, or more, different types of data being captured at the same time. Alternatively, you
can aggregate the raw data and save the resulting processed data in one stream and the
actual raw data in a different stream.

Example: aggregated data, bookmarks

User Guide 21

Accessing a VTune™ Performance Analyzer File

5 Accessing a VTune™ Performance
Analyzer File
This section describes the sequence of steps that you need to follow to access a VTune
analyzer file using the VTune analyzer reader/writer API.

The tasks below can be performed on multiple VTune analyzer files concurrently. For
example, reading from one VTune analyzer file and writing to another concurrently.

1. Optionally: Check the version of the VTune analyzer reader/writer API
Call TBRW_get_version(...)

2. Open the VTune analyzer file.
Call TBRW_open(...)

3. Do any of the following tasks in any order. Different tasks may be performed on a

single VTune analyzer file concurrently. For example, reading two streams, and

combining their data to write a third stream concurrently. However, a given section

or data stream cannot be opened for read, write, or bind/unbind operations

concurrently. The operations are described in the following sections in this chapter

Verify that the currently opened file is a valid VTune analyzer file.

Call TBRW_verify(...)

•

Write a global section. •

•

•

•

•

•

•

Read an existing global section.

Write a data stream.

Read an existing raw data stream.

Bind an existing data stream.

Unbind an existing data stream.

Read an existing bound data stream.

4. Verify that the currently opened file is a valid VTune analyzer file.
Call TBRW_verify(...)

5. Close the VTune analyzer file.

Call TBRW_close(...)

User Guide 23

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

5.1 Writing a Global Section
Follow these steps to write a global section:

1. Call TBRW_writing_section(section)

where section is a TBRW_SECTION_IDENTIFIER:
(TBRW_HARDWARE_SECTION,

TBRW_SOFTWARE_SECTION,

TBRW_PROCESS_THREAD_SECTION,

TBRW_MODULE_SECTION,

TBRW_USER_DEFINED_GLOBAL_SECTION, or

TBRW_VERSION_INFO_SECTION).

2. Use any of the corresponding global section access functions for writing to section,

in any order. For more information, see Global Section Access.

3. Call TBRW_done_section(section)

5.2 Writing a Data Stream
1. Optionally: get the number of data streams currently in the file

Call TBRW_get_number_data_streams()

2. Call TBRW_writing_stream(stream_index)

where stream_index is a non-negative integer. The indexing starts at 0. So, for

example, if there is currently one stream in the tb5 file and you want to write a

second stream, you would call TBRW_writing_stream(1).

3. Write to any of the stream sections for stream stream_index in any order. The

sections must not exist yet – existing sections cannot be overwritten. You may write

to multiple stream sections within stream_index concurrently. The stream

information section and data descriptor section must be written and fully populated

before the next step.

4. Call TBRW_done_stream(stream_index)

5.3 Writing Stream Section
1. Call TBRW_writing_stream_section(stream_index, section)

where stream_index is a non-negative integer, and section is a

24 Document Number: 320237-001US

Accessing a VTune™ Performance Analyzer File

TBRW_STREAM_SECTION_IDENTIFIER:

(TBRW_EVENT_DESCRIPTION_SECTION, TBRW_DATA_DESCRIPTION_SECTION,

TBRW_DATA_SECTION,

TBRW_STREAM_INFO_SECTION, or

TBRW_USER_DEFINED_STREAM_SECTION).

2. Use any of the corresponding stream section access functions in any order, for

writing to section within stream_index.

3. Call TBRW_done_stream_section(stream_index, section)

5.4 Writing Data With a “set_” or “add_” Function
Call the set_ or add_ function, passing in a pointer to the data you wish to write.

NOTE: You are responsible for any memory management that may be required – the API does
not allocate or free memory for you.

5.5 Reading a Global Section
1. Call TBRW_read_section(section)

where section is a TBRW_SECTION_IDENTIFIER:

(TBRW_HARDWARE_SECTION,

TBRW_SOFTWARE_SECTION,

TBRW_PROCESS_THREAD_SECTION,

TBRW_MODULE_SECTION, or

TBRW_USER_DEFINED_GLOBAL_SECTION).

2. Use any of the corresponding global section access functions for reading from

section, in any order. For more information, see Global Section Access.

3. Call TBRW_done_section(section)

5.6 Reading a Raw Data Stream
1. Optionally: get the number of data streams currently in the file

Call TBRW_get_number_data_streams()

User Guide 25

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

2. Call TBRW_reading_stream(stream_index)

where stream_index is a non-negative integer.

3. Read from any of the existing stream sections for stream stream_index in any order.

The sections must exist. You may read from multiple stream sections within

stream_index concurrently.

4. Call TBRW_done_stream(stream_index)

5.7 Reading a Stream Section
1. Call TBRW_reading_stream_section(stream_index, section)

where stream_index is a non-negative integer, and section is a

TBRW_STREAM_SECTION_IDENTIFIER:

(TBRW_EVENT_DESCRIPTION_SECTION,

TBRW_DATA_DESCRIPTION_SECTION,

TBRW_DATA_SECTION,

TBRW_STREAM_INFO_SECTION, or

TBRW_USER_DEFINED_STREAM_SECTION).

2. Use any of the corresponding stream section access functions in any order, for

reading from section within stream_index. For more information see Stream Section

Access.

3. Call TBRW_done_stream_section(stream_index, section)

5.8 Reading Data with a “get_” Function
Do one of the following:

If you already have a buffer that you think is large enough to hold the returned data:

1. Call the get_ function, passing in:

the size of the buffer (IN TBRW_U32 size_of_buffer) •

•

•

a pointer to it (IN BUFFER *buf_ptr),

Optionally, a pointer to a TBRW_U32 (OPTIONAL OUT TBRW_U32
*size_buffer_used), if you want to find out how much of the buffer was used, or
NULL, if you don’t.

26 Document Number: 320237-001US

Accessing a VTune™ Performance Analyzer File

2. Check the returned TBRW_U32 – if it is VTSA_E_BUFFER_TOO_SMALL, then there

was not enough room in your buffer to hold the returned data.

If you passed in a non-NULL (OPTIONAL OUT TBRW_U32 *size_buffer_used), then
this contains the buffer size needed.

•

•

•

•

•

•

•

•

Or, go back to step 1, and try again.

If you want to first check how large a buffer is required:

3. Call the get_ function, passing in:

0 for (IN TBRW_U32 size_of_buffer)

NULL for (IN BUFFER *buf_ptr)

A pointer to a TBRW_U32 for (OPTIONAL OUT TBRW_U32 *size_buffer_used).

4. The TBRW_U32 pointed to by size_buffer_used contains the buffer size needed.

Obtain a buffer at least this large, then the get_ function again, passing in:

the size of the buffer (IN TBRW_U32 size_of_buffer)

a pointer to it (IN BUFFER *buf_ptr),

NULL for (OPTIONAL OUT TBRW_U32 *size_buffer_used).

buf_ptr now points to the data returned by the get_ function.

5.9 Reading Data With the enumerate_ Function
The enumerate functions rely on you to define a callback function which is called with
the data requested. It is up to you to process the data. There are two prototypes for the
callback function, depending on whether you need bind-related information or not.

For enumerating process info, events, data descriptors, raw data streams, raw module
info, and raw thread info, the call back function must have prototype

TBRW_U32 (*DATA_CALLBACK)(const void *data, TBRW_U32
data_size, TBRW_U32 num_entries, void *user_ptr);

Where:

data is a pointer to a buffer containing the data requested

data_size is the size of the buffer

num_entries is the number of entries contained in the data buffer

user_ptr is the pointer passed into the enumerate function.

For enumerating bind-related information such as bound data streams, module binding
info, and thread binding info, the call back function needs to have prototype

User Guide 27

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

TBRW_U32 (*BIND_DATA_CALLBACK)(const void *data, TBRW_U32
sizeof_data_buffer, TBRW_U64 num_entries,

 const DATA_BIND_STRUCT *bind_table, TBRW_U32
sizeof_bind_buffer, void *user_ptr);

Where:

data is a pointer to a buffer containing the raw data requested

sizeof_data_buffer is the size of the raw data buffer

num_entries is the number of entries contained in both the raw data buffer and
the bind information buffer

bind_table is a pointer to the bind information for the raw data

sizeof_bind_buffer is the size of the bind information buffer

user_ptr is the pointer passed into the enumerate function.

The bind information consists of the indexes of associated module, PID, or tid for each
item in the raw buffer.

For example, when calling the TBRW_bind_enumerate_data() function, for each raw
data sample contained in the data buffer, the bind_table buffer contains the index of
the associated module, PID, and tid. Once you have the index, you can use the
TBRW_get_one_module/pid/tid() functions to get the actual module, PID, or tid
associated with that sample. For more information, see API Data Structure Reference.

The following are basic steps to use the enumerate functions:

1. Define a callback function as mentioned above.

2. Call the enumerate_ function, passing in:

A pointer to your callback function for (DATA_CALLBACK *my_callback_func). •

•

•

•

•

•

•

NULL or a pointer of your choosing for (void *user_ptr).

The start index of the entry you want to start enumerating from.

3. The enumerate_ function calls your callback, passing in

A pointer to the enumerated data(const void *data), starting from the index you
specified. For example, if the start index = 0, then the enumerate_ function passes
back data starting from the 1st entry. If the start index = 25, then the enumerate_
function will pass back data starting from the 26th entry.

The total size of the data retrieved

A count of how many elements are in the enumerated data, in (TBRW_U32
num_entries)

The (void *user_ptr) you passed to the enumerate_ function (in step 2b
above).

4. Your callback processes the enumerated data, which is read-only.

28 Document Number: 320237-001US

Accessing a VTune™ Performance Analyzer File

5. Your callback should return TRUE, if you want more data, and it is available – in

which case we go back to step 3. Or FALSE, if you don’t need any more data, even if

there are more elements available. Any return value other than TRUE (1) or FALSE

(0) indicates your callback function encountered an error. In this case, the

TBRW_enumerate function exits with the error value returned by your callback.
When the enumerate_ function is done enumerating the data, it returns.

5.10 Binding and Unbinding a Data Stream
When viewing .tb5 files in the VTune analyzer, it automatically binds the files for you.
The following API provides the programmatic interface for the same operation.

To check if a data stream is bound:
Call TBRW_is_bound() on the data stream of interest. This function sets a flag that is
equal zero if the data stream is not bound or non-zero if the data stream is bound.

To bind a data stream:

1. Call TBRW_dobind() on the data stream of interest.

2. You can call the bind information retrieval functions in any order. See the API

Function Reference for complete information on the functions.

3. The following are several examples of retrieving information on bound data streams:

Retrieve data samples and their associated modules, PIDs, and TIDs using

BRW_bind_enumerate_data()

•

Retrieve modules and their associated PIDs using

BRW_bind_enumerate_modules()

•

Get one module record using TBRW_get_one_module() •

To unbind a data stream:
Call TBRW_unbbind() on the data stream of interest.

5.11 Handling Errors
Each of the API calls returns a TBRW_U32 code. This code should be checked after
each API call. When this code indicates an error has occurred:

User Guide 29

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

Optionally: Convert the error code to a string.
Call TBRW_error_string(...)

•

• Notify the API to abort and clean up.
Call TBRW_abort_cleanup_and_close(...)

30 Document Number: 320237-001US

Writing VTune™ Performance Analyzer Compatible Files

6 Writing VTune™ Performance
Analyzer Compatible Files
The TBRW library enables you to write your own VTune analyzer-compatible files. A
VTune analyzer-compatible file is one that can be viewed by the VTune analyzer GUI or
the sfdump5 tool provided with Sampling Enabling Product (SEP). This section details the
requirements for generating a VTune analyzer-compatible file.

You can use your own custom sampling collection program and view the data using the
VTune analyzer or SEP viewer. To do this, write your data using the TBRW library. This
ensures that the data is in a VTune analyzer-compatible format and then view the file
with the VTune analyzer viewer.

The rest of this chapter explains how to create sampling tb5 data for the VTune analyzer

6.1 How Bind Works
During sampling collection, data samples, modules, and events are collected. During the
bind process, the processes and threads are automatically generated from the data
samples and modules. Processes, threads, modules, and data are written to file in an
array.

Before binding, the data samples contain the OS PID. After binding, the OS PID field is
overwritten by the index of the PID in the PID array associated with that sample.

Similarly, before binding the module index for each sample record is set to “unknown”.
After binding that field is set to the index of the module in the module array associated
with the sample.

6.2 Sampling Data Descriptors
To create sampling data section that you can view with the VTune analyzer, use the
following data descriptor types for creating TBRW_SAMPREC_DESC_ENTRY entries.

1. Add sample record descriptor
TBRW_SAMPREC_DESC_ENTRY desc_entry;

desc_entry.desc_size = sizeof(TBRW_SAMPREC_DESC_ENTRY);

desc_entry.desc_data_size = sizeof(TBRW_SampleRecordPC);

desc_entry.desc_offset = 0;

desc_entry.desc_type = ST_LEGACY_SAMPLE_RECORD;

desc_entry.desc_type = SST_NONE;

User Guide 31

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

...

2. Add TSC descriptor
TBRW_SAMPREC_DESC_ENTRY desc_entry;

desc_entry.desc_size = sizeof(TBRW_SAMPREC_DESC_ENTRY);

desc_entry.desc_data_size = sizeof(TBRW_SampleRecordTSC);

desc_entry.desc_offset = 0;

desc_entry.desc_type = ST_TIMESTAMP;

desc_entry.desc_type = SST_TSC;

...

6.3 Sample Record Data Structure
The sampling data needs to be in a specific format for the VTune analyzer viewer to
display the TB5 files. The sampling data must be written to data stream 0. Each sample
record needs to fit into the TBRW SampleRecordPC structure, defined in tbrw.h
header file as:

typedef struct TBRW_SampleRecordPC_s { // Program Counter section

 union {

 struct {

 TBRW_U64 iip; // IA-64 architecture interrupt instruction pointer

 TBRW_U64 ipsr; // IA-64 architecture interrupt processor status
register (eflags)

 };

 struct {

 TBRW_U32 eip; // IA-32 architecture instruction pointer

 TBRW_U32 eflags; // IA-32 architecture eflags

 TBRW_CodeDescriptor csd; // IA-32 architecture code seg
descriptor (8 bytes)

 };

 };

 TBRW_U16 cs; // IA-32 architecture code segment (0 for
IA-64 architecture)

 union {

 TBRW_U16 cpuAndOS; // cpu and OS info as one word

 struct { // cpu and OS info broken out

 TBRW_U16 cpuNum : 12; // cpu number (0 - 4096)

 TBRW_U16 notVmid0 : 1; // not being used, set to zero

 TBRW_U16 codeMode : 2; // not being used, set to zero

 TBRW_U16 : 1; // reserved

 };

32 Document Number: 320237-001US

Writing VTune™ Performance Analyzer Compatible Files

 };

 TBRW_U32 tid; // thread ID (from OS, may get reused, a
problem, see tidIsRaw) 06-25-99

 TBRW_U32 pidRecIndex; // process ID rec index (index into start of
pid record section)

 // .. can validly be 0 if not raw (array index).
Use ReturnPid() to

 // ..access this field

 // .. (see pidRecIndexRaw)

 union {

 TBRW_U32 bitFields2;

 struct {

 TBRW_U32 mrIndex : 20; // module record index (index into start
of module rec section)

 // .. (see mrIndexNone)

 TBRW_U32 eventIndex : 8; // index into the Events section of the
event that triggered this sample

 TBRW_U32 tidIsRaw : 1; // not being used, set to zero

 TBRW_U32 IA64PC : 1; // IA-64 architecture PC sample
(TRUE=this is a IA-64 architecture PC sample record)

 TBRW_U32 pidRecIndexRaw : 1; // pidRecIndex is raw OS pid

 TBRW_U32 mrIndexNone : 1; // no mrIndex (unknown module)

 };

 };

} TBRW_SampleRecordPC, *TBRW_PSampleRecordPC;

You need to write raw data and let the TBRW API do the binding. As mentioned in the
previous section, when a tb5 file is viewed using the VTune analyzer, the file
automatically goes through the bind operation. There is no need to explicitly call the
TBRW bind API. These are the steps you need to follow:

3. set mrIndex = 0,

4. set pidRecIndex to the OS pid,

5. set pidRecIndexRaw = 1.

Writing bound data is not supported.

6.4 Required Sections
As mentioned above, during the binding process the process and thread sections are
automatically deduced from the samples and the module sections. Therefore, you should
not write process and thread sections.

Required Global sections:

User Guide 33

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

Hardware •

•

•

•

•

•

•

Software

Version Info

Modules

Required Stream sections:

Events

Stream Info

Data

All other tb5 sections are optional, with the exception of the process and thread sections
which are generated by the TBRW API and users of the TBRW API need not write these
sections explicitly.

6.5 64-bit Samples vs. 32-bit Samples
If you are collecting 64-bit samples, you need to fill out the iip and ipsr fields, and
set the IA64PC field = 1.

If you are collecting 32-bit samples, you need to fill out the eip, csd and eflags field,
set the IA64PC field = 0.

34 Document Number: 320237-001US

FAQ

7 FAQ

7.1 The os_platform field in the TBRW_OS
structure is an integer and described as an
enumerated type. Do we use a generic "other"
indicator ?
The operating system platform is defined in tbrw_types.h header file as:

#define OSFAMILY_WIN32 0x00000001

#define OSFAMILY_WIN64 0x00000002

#define OSFAMILY_WINCE 0x00000003

#define OSFAMILY_XOS 0x00000004

#define OSFAMILY_LINUX32 0x00000005

#define OSFAMILY_LINUX64 0x00000006

You need to define your operating system platform type as any number between the
range 0x100 and 0x1FF. All other bytes are reserved for internal use.

7.2 32 bit PIDs will not be sufficient for 64 bit OS,
should be TBRW_U64.
If you want to write unbound data to the TB5 file, and apply our binding algorithm to
generate the PIDs and TIDs, then you only need to write the data samples, modules,
and events section. The PIDs and TIDs are generated during the bind process. In this
case, the TBRW API adjusts the data structures to handle 64 bit PIDs but as you see
above in the TBRW SampleRecordPC definition, the bind algorithm currently handles only
32 bit PIDs and TIDs. Therefore, there would need to be some translation from 64 bit
PIDs to 32 bit PIDs when writing the sampling data. You need to do this translation
yourself.

7.3 Same applies for TID
The above also applies for TID.

User Guide 35

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

7.4 In TBRW_VERSION_INFO structure, what
value should we use for the sampling_driver
field? Do we use "other"?
Set it to 0xFFFFFFFF, which indicates “unknown” type.

7.5 Event mapping will require a bit more detail. I
don't see much I recognize
Depending on what the goal is, not all fields in the events section need to be filled in. If
the objective is to be able to write a TB5 file, and then import the file into the VTune
analyzer for viewing, then only the event_size, event_id, event_flags,
event_sav, and event_name need to be filled in. The event_num_details,
event_arch_name, and event_detail_array can be set to zero. The
event_detail_array is used to record in the TB5 file how the registers were
programmed in order to collect on those events. Its presence has no effect on viewing.

7.6 Why does my call to
TBRW_convert_uniqueid_to_string()
sometimes return an "invalid string" error? Is
this expected?
This may happen when the function is trying to convert a string with unique id = 0, in
other words a NULL string. This is expected behavior and indicates that the string is
invalid. Check to see if the string’s unique id is zero.

7.7 Where can I find a list of error return codes?
All error codes are available in the public header file tbrw.h

36 Document Number: 320237-001US

API Data Structure Reference

8 API Data Structure Reference
The types used in defining the API and the data structures below specify the types in an
OS and compiler independent manner. The types are:

U? indicates unsigned. The ? is a number indicating the number of bits. For example,
TBRW_U32 indicates a 32-bit unsigned value

•

• S? indicates signed. For example S64 indicates a signed 64-bit value.

A header file, provided as part of this release, sets up the proper typedefs to make this
true on a variety of environments.

The VTune analyzer reader/writer API expects all strings to be UNICODE. When writing
strings to disk, the UNICODE strings are converted to multibyte for backwards
compatibility with VTune analyzer legacy readers. Where applicable, the API’s use strings
of type TBRW_CHAR, which is #defined to be wchar_t. This enables changing the string
type at a later date.

The TBRW library accepts pointers to string for write operations. For read operations,
the value retuned is a unique string identifier which can be converted back to the
original string on demand. This enables the library to return information (strings,
records, whatever) regardless of the on-disk size.

In general, the data structures are defined so that compiler padding is either minimized
or explicitly part of the structure. This facilitates porting code between different
operating systems, architectures, and compilers.

NOTE: NOTE: Do not assume that the TBRW structures in this document (which are defined in
tbrw_types.h file) are similar to the internal structures.

8.1 Basic Types
The following are the basic TBRW data types.

typedef wchar_t TBRW_CHAR;

typedef unsigned char TBRW_U8;

typedef unsigned short TBRW_U16;

typedef unsigned int TBRW_U32;

typedef signed int TBRW_S32;

#if defined(TBRW_OS_LINUX) || defined(TBRW_OS_APPLE)

typedef signed long long TBRW_S64;

typedef unsigned long long TBRW_U64;

#elif defined(TBRW_OS_WINDOWS)

User Guide 37

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

typedef signed __int64 TBRW_S64;

typedef unsigned __int64 TBRW_U64;

#endif

typedef void *TBRW_PTR; // as far as the user is concerned

typedef struct __string_or_id { // on writes, it is a string pointer

 // on reads, it is a unique id.

 union {

 TBRW_U64 soi_uniqueid; // on reads, it is a unique id.

 TBRW_CHAR *soi_ptr; // for debug/implementation can use

 // bit 63 to indicate whether it is an
unique id or not

 };

} TBRW_STRING_OR_ID;

8.2 Section Identifiers
typedef enum {

 TBRW_HARDWARE_SECTION,

 TBRW_SOFTWARE_SECTION,

 TBRW_PROCESS_THREAD_SECTION,

 TBRW_MODULE_SECTION,

 TBRW_USER_DEFINED_GLOBAL_SECTION,

 TBRW_VERSION_INFO_SECTION

} TBRW_SECTION_IDENTIFIER;

typedef enum {

 TBRW_EVENT_DESCRIPTION_SECTION,

 TBRW_DATA_DESCRIPTION_SECTION,

 TBRW_DATA_SECTION,

 TBRW_USER_DEFINED_STREAM_SECTION,

 TBRW_STREAM_INFO_SECTION

} TBRW_STREAM_SECTION_IDENTIFIER;

8.3 Hardware Structures
typedef struct __TBRW_system {

 TBRW_U32 system_size; // set to
sizeof(TBRW_SYSTEM). Used for versioning

 TBRW_U32 system_num_nodes; // number of nodes in a system

38 Document Number: 320237-001US

API Data Structure Reference

 TBRW_NODE *node_array; // pointer to an array of nodes for this
system

} TBRW_SYSTEM;

typedef struct __TBRW_node {

 TBRW_U32 node_size; // set to sizeof(TBRW_NODE). Used
for versioning

 TBRW_U32 node_type_from_shell; //the shell platform

 TBRW_U32 node_id; // The node number/id (if known)

 TBRW_U32 node_num_available; // total number cpus on this node

 TBRW_U32 node_num_used; // number used based on cpu mask at
time of run

 TBRW_U64 node_physical_memory; // amount of physical memory on this
node

 TBRW_CPU *cpu_array; // pointer to an array of cpu’s for
this node

} TBRW_NODE;

typedef struct __TBRW_cpu {

 TBRW_U32 cpu_size; // set to sizeof(TBRW_CPU). Used
for versioning

TBRW_U32 cpu_number; // The cpu number

 TBRW_U32 cpu_native_arch_type; // The native
architecture for this processor

 TBRW_U32 cpu_intel_processor_number; // The intel
processor number (if available)

 TBRW_U32 cpu_speed_mhz; // cpu speed (in Mhz)

 TBRW_U32 cpu_fsb_mhz; // cpu front side bus speed (in Mhz)

 TBRW_U32 cpu_cache_L2;
// Size of the L2 cache (in Kbytes)

 TBRW_U32 cpu_cache_L3;
// Size of the L3 cache (in Kbytes)

 S64 cpu_tsc_offset;
// TSC offset from CPU 0 ie. (TSC CPU N – TSC CPU 0)

 TBRW_U16 cpu_pacakge_num;
// package number for this cpu (if known)

 TBRW_U16 cpu_core_num;
// core number (if known)

 TBRW_U16 cpu_hardware_thread_num;
// hardware thread number inside core (if known)

User Guide 39

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

 TBRW_U16 cpu_threads_per_core;
// total number of h/w threads per core (if known)

 TBRW_U32 num_cpu_arch_array;
//number of cpu architectures supported by this cpu

 TBRW_CPU_ARCH *cpu_arch_array;
// pointer to an array of cpu

// architectures supported by this cpu (for

// example, IA-64 architecture processors that support execution

// of IA-32 architecture binaries can have two elements in the

// cpu_arch_array table). The native architectural

// type must be represented in this array.

} TBRW_CPU;

typedef struct __TBRW_cpu_arch {

TBRW_U32 arch_size;
// set to sizeof(TBRW_CPU_ARCH). Used for versioning

TBRW_U16 arch_type;
// enum of architecture (IA-32, IA-64, Intel® 64).
//the enumeration is defined in the header file

//samp_info.h and is called GEN_ENTRY_SUBTYPES

TBRW_U16 arch_num_cpuid; // number of cpuid structs available for this arch

 union {

 TBRW_CPUID_IA32 *cpuid_ia32_array;

 TBRW_CPUID_IA64 *cpuid_ia64_array;

 };

} TBRW_CPU_ARCH;

typedef struct __TBRW_cpuid_ia32 {

 TBRW_U32 cpuid_eax_input;

 TBRW_U32 cpuid_eax;

 TBRW_U32 cpuid_ebx;

 TBRW_U32 cpuid_ecx;

 TBRW_U32 cpuid_edx;

 TBRW_U32 reserved

} TBRW_CPUD_IA32;

typedef struct __TBRW_cpuid_ia64 {

 TBRW_U64 cpuid_select;

 TBRW_U64 cpuid_val;

 TBRW_U64 reserved;

} TBRW_CPUID_IA64;

40 Document Number: 320237-001US

API Data Structure Reference

8.4 Software Structures
typedef struct __TBRW_host {

TBRW_U32 host_size; // set to sizeof(TBRW_HOST).
Used for versioning

TBRW_STRING_OR_ID host_ip_address; // IP address of the host

TBRW_STRING_OR_ID host_name; // human readable host name

TBRW_U32 reserved;

} TBRW_HOST;

typedef struct __TBRW_os {

TBRW_U32 os_size; // set to sizeof(TBRW_OS). Used for versioning

TBRW_U32 os_platform; // OS indicator (linux, windows, etc)

TBRW_U32 os_major; // OS major version

TBRW_U32 os_minor; // OS minor version

TBRW_U32 os_build; // OS build number

TBRW_U32 os_extra; // OS release info, service packs, errata numbers,
etc.

TBRW_STRING_OR_ID os_name; // human readable OS name

TBRW_STRING_OR_ID os_name_extra; // human readable OS arbitrary
extra information (like

// service packs, errata, the result of `uname –r`, etc)

} TBRW_OS;

typedef struct __TBRW_application {

TBRW_U32 app_size; // set to sizeof(TBRW_APPLICATION). Used
for versioning

TBRW_U32 app_reserved; // reserved, should be set to zero

TBRW_U32 app_page_size; // page size (as seen by application)

TBRW_U32 app_alloc_granularity; // granularity of vm (i.e. mmap()
size/alignement)

TBRW_U64 app_min_app_addr; // lowest memory address accessible by an
application

TBRW_U64 app_max_app_addr; // highest memory address accessible by an
application

} TBRW_APPLICATION;

User Guide 41

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

8.5 Process/Thread Structures
typedef struct __TBRW_pid {

TBRW_U32 pid_size; // set to sizeof(TBRW_PID). Used for versioning

TBRW_U32 pid_reserved; // reserved, should be zero

TBRW_U32 pid_id; // process id (as provided by the OS). Needs

 // to be comparable against the PID
// field in the sample record

TBRW_U32 pid_flags; // Creation or termination event,
event_when is

 // tsc or sample number, etc.

TBRW_U64 pid_event_when; // An indication of when the pid event occured
(i.e.

 // could be a tsc value, could be a
sample number, etc.)

TBRW_U32 reserved1; // can be used for cpu # later on when we move
to tsc's

TBRW_U32 reserved2;

TBRW_STRING_OR_ID pid_path; // path to the process executable
(if create event)

TBRW_STRING_OR_ID pid_name; // name of the process (if create
event)

} TBRW_PID;

typedef struct __TBRW_tid {

TBRW_U32 tid_size; // set to sizeof(TBRW_TID). Used for
versioning

 TBRW_U32 tid_associated_pid;
 // process that this thread is a part of. Needs

// to be comparable against the PID field in the

// sample record and the TBRW_PID pid_id field

TBRW_U32 tid_id; // thread id (as provided by the OS). Needs

 // to be comparable against the TID field in the

 // sample record

TBRW_U32 tid_flags; // Creation or termination event, event_when is

 // tsc or sample count, etc.

TBRW_U64 tid_event_when; // An indication of when the tid event occured
 // (i.e could be a tsc value, could be a sample

 // number, etc)

TBRW_U32 reserved1; // can be used for cpu # later on when we move to
tsc's

42 Document Number: 320237-001US

API Data Structure Reference

TBRW_U32 reserved2;

TBRW_STRING_OR_ID tid_name; // name of the thread (if create event)

} TBRW_TID;

8.6 Module Structure
typedef struct __TBRW_module {

TBRW_U32 module_size; // set to sizeof(TBRW_MODULE). Used for
versioning

TBRW_U32 module_reserved; // reserved, should be zero

TBRW_U32 module_associated_pid; // process which loaded/unloaded this
module

TBRW_U32 module_flags; // addition information about this module
(load

// vs. Unload, global,

// exe, segment type, event_when is tsc

// vs. Sample count, etc).

TBRW_U64 module_event_when; // An indication of when the event
occurred. Could be

 // a timestamp or correspond to a
particular sample

 // (sample number)

 TBRW_U32 module_segment_number; // for java

TBRW_U32 module_segment_type : 2; // see the MODE_ types defined in
SampFile.h

 TBRW_U32 :30;

 TBRW_U32 module_code_selector; // for IA-32
architecture

TBRW_U64 module_length; // size of the module (if load event)

TBRW_U64 module_load_address; // address where module was loaded (if load
event)

TBRW_U32 reserved_for_legacy; // holds module unload sample count, please
don't use

TBRW U32 reserved for legacy2; // for now holds the pid index in the case
// of a bound tb5 file

 // WARNING: temporary only!

User Guide 43

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

TBRW_U32 reserved_for_legacy_flags; // same as legacy ModuleRecord.flags
field

TBRW_U32 reserved1; // can be used for cpu # later on

TBRW_U64 module_unload_tsc; // Saves the load tsc for tsc based data
collection,

 // module_event_when is used for old sample

 // sample count based tb5 data

TBRW_STRING_OR_ID module_path; // path to the module (if load event)

TBRW_STRING_OR_ID module_name; // name of the module (if load event)

TBRW_STRING_OR_ID module_segment_name; // name of the segment (if load
event and segments in use)

} TBRW_MODULE;

8.7 Version Information Structure
typedef struct __TBRW_version_info

{

 TBRW_U32 version_info_size; //set to sizeof(TBRW_VERSION_INFO)

 TBRW_U32 sampling_driver_version; //version of the sampling driver

 TBRW_U32 bind_version; //version of the bind library used to
analyze the tb5 file

 TBRW_U32 sample_file_version; //version of the sample file format

} TBRW_VERSION_INFO;

8.8 Stream Information Structure
typedef struct __TBRW_stream_info

{

 TBRW_U32 stream_info_size; //set to sizeof(TBRW_STREAM_INFO)

 TBRW_U32 sampling_duration; //duration of the sampling session
(in milliseconds ??)

 TBRW_U32 stream_type; //refer to TBRW_STREAM_TYPE

 TBRW_U32 sampling_interval; //in microseconds

 VTUNE ANALYZER_FILETIME sampling_start_time;
//start time of the sampling session

 VTUNE ANALYZER_FILETIME sampling_end_time;
//end time of the sampling session

 TBRW_STRING_OR_ID command_line;
//the command line used to generate this stream

 TBRW_STRING_OR_ID cpu_mask;
//even though the cpu mask info is also found in the command line,

//we include it here too because TBRW does not

44 Document Number: 320237-001US

API Data Structure Reference

//know how to parse the command line

//(could be sep command, vtl command, dcpi

 //command, etc).

 TBRW_STRING_OR_ID comment; //the comment describing this stream

} TBRW_STREAM_INFO;

//Note that one usage model for filling in the stream info structure is

//to set stream_type = TBRW_CUSTOM_STREAM and set the comment to a string of
your choice.

//Then, when reading the tb5 file to find your custom stream, you can
iterate through

//all streams and parse the comment field to find the right stream

8.9 Stream Types
typedef enum {

 TBRW_SAMPLING_STREAM = 1,

 TBRW_AGGREGATED_STREAM,

 TBRW_BOOKMARK_STREAM,

 TBRW_BIND_DATA_INFORMATION_STREAM,

 TBRW_BIND_MODULE_INFORMATION_STREAM,

 TBRW_BIND_PID_INFORMATION_STREAM,

 TBRW_BIND_TID_INFORMATION_STREAM,

 TBRW_CUSTOM_STREAM

} TBRW_STREAM_TYPE;

8.10 Event Descriptor
An event descriptor is an array of TBRW_EVENT that describes the events that were
used to collect the data in a corresponding data stream.

//Note: an array of type TBRW_EVENT_DETAIL immediately follows each
TBRW_EVENT

//The array has event_num_details number of items in it

typedef struct __TBRW_event {

TBRW_U32 event_size; // set to sizeof(TBRW_EVENT). Used for versioning

TBRW_U32 event_id; // event id. Must be comparable to the event id
 // field in the sample record.

TBRW_U32 event_num_details; // number of event details supplied

User Guide 45

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

TBRW_U32 event_flags; // event info (ie. Ebs vs. Tbs, units for the SAV,
etc)

TBRW_U64 event_sav; // sample after value used for this event

TBRW_STRING_OR_ID event_name; // human readable name of the event

TBRW_STRING_OR_ID event_arch_name; //human readable name of cpu type, i.e.
"Pentium M"

TBRW_EVENT_DETAIL *event_detail_array; //details about programming this
event

} TBRW_EVENT;

typedef struct __TBRW_event_detail {

TBRW_U32 detail_size; // set to sizeof(TBRW_EVENT_DETAIL). Used
for versioning

TBRW_U16 detail_access_size; // size of the access (in bits) i.e. 8, 16,
32, 64

TBRW_U8 detail_method; // type of access – MSR, PCI, Memory, other

TBRW_U8 detail_access; // read or write

TBRW_U64 detail_address; // address of read/write

TBRW_U64 detail_value; // value of read/write

TBRW_U8 legacy_command; // corresponds to legacy EventRegSetEx.command

 // this field is useful when generating legacy Events info

TBRW_U8 reserved1;

TBRW_U16 reserved2;

TBRW_U32 reserved3;

} TBRW_EVENT_DETAIL;

8.11 Data Descriptor
A data descriptor is an array of TBRW_SAMPREC_DESC_ENTRY that fully describes the
data for a corresponding data stream.

typedef struct __tbrw_samprec_desc_entry {

 union {

 TBRW_U64 force_8_byte_aligned;

 struct {

 TBRW_U32 desc_size; // set to
sizeof(TBRW_SAMPREC_DESC_ENTRY).

 // Used for versioning.

46 Document Number: 320237-001US

API Data Structure Reference

 TBRW_U32 desc_offset; // offset from start of sample record in
bytes

 TBRW_U16 desc_type; // See ST_ types defined in
samprec_shared.h

 TBRW_U16 desc_subtype; // See SST_ types defined in
samprec_shared.h

 TBRW_U32 desc_data_size; // in bytes

 TBRW_U64 desc_access_offset; // msr # or memory offset

 TBRW_U8 desc_access_type; // read = 0, write = 1

 TBRW_U8 desc_access_method; // register = 0, memory = 1

 TBRW_U8 desc_sample_flag; // internal driver sample flag

 TBRW_U8 reserved0; // reserved

 TBRW_U32 reserved1;

 TBRW_STRING_OR_ID desc_name; //human-readable name or comment

 };

 };

} TBRW_SAMPREC_DESC_ENTRY;

//Note that one usage model for filling in the data descriptor structure is

//to set desc_type = ST_NONE and set the desc_name to a string of your
choice.

//Then, when enumerating through the data descriptors you can parse the
desc_name

//to determine the type of this data descriptor.

typedef enum {

 ST_NONE = 0,

 ST_LEGACY_SAMPLE_RECORD,

 ST_IP,

 ST_PID,

 ST_TID,

 ST_PROCESSOR_NUMBER,

 ST_PROCESSOR_STATUS,

 ST_TIME_STAMP,

 ST_POWER,

 ST_INTERRUPT_FAULT_ADDR,

 ST_IEAR,

 ST_DEAR,

 ST_BRANCH_TRACE,

 ST_INST_TRACE,

 ST_PMD,

 ST_IEAR_PHYSICAL,

 ST_DEAR_PHYSICAL,

User Guide 47

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

 ST_BRANCH_TRACE_PHYSICAL,

 ST_INST_TRACE_PHYSICAL,

 ST_PMD_PHYSICAL,

 ST_LEGACY_UNKNOWN, //unknown legacy type

 ST_SAMPLE_LAST,

 //

 // Extended sample record entries start here - these entries do

 // not physically reside in a sample record but can be computed

 // based on data in a physical sample record

 //

 // I.E. (bit 14 and up == 0) && (bit 13 == 1) && (bit 12 == 0)

 // means extended sample record entries

 // (decimal 8192 through 12287) = 4096 values

 //

 ST_START_EXT_SAMPLE_REC_ENTRIES = 0x2000,

 ST_END_EXT_SAMPLE_REC_ENTRIES = 0x2FFF,

 ST_PROCESS = 0x2000, // process name

 ST_PROCESS_PATH, // process path

 ST_THREAD, // thread name

 ST_MODULE_SEGMENT_NAME, // module segment name

 ST_SEG_NUM, // module segment number

 ST_SEG_OFFSET,

 ST_SEG_TYPE,

 ST_MODULE_LOAD_ADDRESS, // module load address

 ST_MODULE, // module name

 ST_MODULE_PATH, // module path

 ST_EVENT_ID, // event ID

 ST_EVENT, // event name

 ST_HARDWARE_THREAD, // hardware thread

 ST_CORE, // core number

 ST_PACKAGE, // package number

 ST_SAMPLES,

 ST_EVENT_COUNTS,

 ST_FUNCTION,

 ST_FUNCTION_FULL_NAME,

 ST_CLASS,

 ST_FN_SIZE,

 ST_RVA,

 ST_FN_SEG_OFFSET,

 ST_FN_RVA,

48 Document Number: 320237-001US

API Data Structure Reference

 ST_WALL_CLOCK, // Wall clock.

 ST_FNID_SUM, // e.g. sum(some_column)

 ST_FNID_AVG, // e.g. avg(some_column)

 ST_FNID_MIN, // e.g. min(some_column)

 ST_FNID_MAX, // e.g. max(some_column)

 // Bind related

 ST_PROCESS_IDX,

 ST_THREAD_IDX,

 ST_MODULE_IDX,

 ST_EVENT_IDX,

 ST_SAMPLE_IDX,

 ST_PERCENTAGE_TOTAL,

 ST_PERCENTAGE_SEL,

 ST_MODULE_IDX_FOR_PROCESS_NAME,

 ST_ANNOTATION, // Annotation text.

 ST_POST_PROCESS_LAST,

 //

 // the VTune™ Analyzer ignores

 //

 // I.E. (bit 15 == 0) && (bit 14 == 1) means user-defined.

 // (decimal 16384 through 32767)

 //

 ST_START_USER_DEFINED = 0x4000,

 ST_END_USER_DEFINED = 0x7FFF,

 //

 // For future use...

 //

 // It is an error to use a type between

 // ST_RESERVED_START and ST_RESERVED_END, inclusive

 //

 ST_RESERVED_START = 0x8000,

 ST_RESERVED_END = 0xffff

} TBRW_DESC_TYPE;

User Guide 49

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

typedef enum {

 SST_NONE = 0,

 //

 // Indicates a no data should be filled in by the driver,

 // but is left empty for someone else to use

 //

 SST_BLANK_SPACE,

 // Subtypes for time

 SST_TS_MILLISECONDS,

 SST_TS_CPU_CYCLES,

 SST_TS_FSB_CYCLES,

 SST_TS_OTHER,

 SST_TS_SAMPLE_COUNT,

 SST_TS_NANOSECONDS,

 // subtypes for BTB register

 SST_LBR_TOS,

 SST_LBR_FROM,

 SST_LBR_TO,

 SST_LBR_FROM_TO,

 SST_LBR_OTHER,

 SST_IEAR_CONFIG,

 SST_IEAR_INST_ADDR,

 SST_IEAR_LATENCY,

 SST_DEAR_CONFIG,

 SST_DEAR_INST_ADDR,

 SST_DEAR_LATENCY,

 SST_DEAR_DATA_ADDR,

 SST_BTB_CONFIG,

 SST_BTB_INDEX,

 SST_BTB_EXTENSION,

 SST_BTB_DATA,

 SST_IPEAR_CONFIG,

 SST_IPEAR_INDEX,

 SST_IPEAR_EXTENSION,

 SST_IPEAR_DATA,

50 Document Number: 320237-001US

API Data Structure Reference

 SST_IIP,

 SST_IPSR,

 SST_EIP,

 SST_EFLAGS,

 SST_TSC,

 SST_ITC,

 SST_PSTATE,

 SST_IA32_PERF_STATUS,

 SST_IFA,

 //

 SST_RESERVED_START = 0x8000,

 SST_RESERVED_END = 0xffff

} TBRW_DESC_SUBTYPE;

NOTE: The data descriptor types and sub types listed above are defined in the
samprec_shared.h header file.

8.12 Bind Structure

NOTE: one DATA_BIND_STRUCT exists per one sample record

typedef struct __data_bind_struct

{

 TBRW_U64 module_index; //index into the module array

 TBRW_U64 pid_index; //index into the pid array

 TBRW_U64 tid_index; //index into the tid array

} DATA_BIND_STRUCT;

//Note: there is a 1:1 mapping between elements of this type

//and the module record, i.e. one MODULE_BIND_STRUCT exists per module

typedef struct __module_bind_struct

{

 TBRW_U64 pid_index; //index into the pid array

} MODULE_BIND_STRUCT;

//Note: there is a 1:1 mapping between elements of this type

//and the tid record, i.e. one TID_BIND_STRUCT exists per tid

typedef struct __tid_bind_struct

User Guide 51

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

{

 TBRW_U64 pid_index; //index into the pid array

} TID_BIND_STRUCT;

52 Document Number: 320237-001US

API Function Reference

9 API Function Reference
For compatibility with the largest audience, the VTune analyzer reader/writer API’s is
defined in C. The implementation of the VTune analyzer reader/writer API itself is in
either C or C++.

9.1 High Level Functions

TBRW_U32 TBRW_get_version(OUT TBRW_U32 *major,
OUT TBRW_U32 *minor)
Gets a major and minor number representing the current version of the VTune analyzer
reader/writer API.

TBRW_U32 TBRW_open(OUT TBRW_PTR *ptr, IN const
TBRW_CHAR *filename, IN TBRW_U32 access_mode)
Open the VTune analyzer file.

Returns an opaque type passed to all the rest of the routines so the API can keep data
per open (similar in concept to the fd passed back by a generic open()call). The access
mode can be a combination of the file permissions flags defined in tbrw_types.h

TBRW_FILE_READ

TBRW_FILE_WRITE

TBRW_FILE_CREATE_ALWAYS

If possible, it is best to give read and write permissions, since doing so improves
performance on subsequent accesses to the file.

NOTE: When you create new tb5 files, you must provide the TBRW_FILE_CREATE_ALWAYS
flag.

TBRW_U32 TBRW_close (IN TBRW_PTR ptr)
Close the VTune analyzer file.

User Guide 53

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

TBRW_U32 TBRW_error_string(IN TBRW_U32
error_code, OUT const TBRW_CHAR **error_string)
Convert a TBRW_U32 error code

This function is returned when any of the API calls are used into a string by calling this
API. TBRW_U32 error codes are defined in the file tbrw.h.

You cannot modify the string (it is a const). If you wish to modify the string, make a
copy and modify the copy.

TBRW_U32 TBRW_abort_cleanup_and_close(IN
TBRW_PTR ptr)
Abort the use of the VTune analyzer file.

Use this function during abnormal error conditions. This function enables the API to do
internal cleanup as required. For example, removing temporary files, or freeing internal
memory.

TBRW_U32 TBRW_verify (IN TBRW_PTR ptr)
Verify that the currently opened file is a valid VTune analyzer file.

Use this routine to verify the file is a proper VTune analyzer file before trying to access
the data. You can also call it before calling TBRW_close () to make sure that the data
to be persisted is valid.

TBRW_U32 TBRW_convert_uniqueid_to_string(IN
TBRW_PTR ptr, IN TBRW_U32 size_of_buffer, IN
TBRW_STRING_OR_ID *string_id, OUT TBRW_CHAR
*buffer, OPTIONAL OUT TBRW_U32
*size_buffer_needed)
Returns a string corresponding to a string ID

When passed a unique string id, returns the string that corresponded to that unique id.

All strings in TBRW are represented by the TBRW_STRING_OR_ID data structure. This is
the data structure:

typedef struct __string_or_id { // on writes, it is a string pointer

 // on reads, it is a unique id.

 union {

 TBRW_U64 soi_uniqueid; // on reads, it is a unique id.

 TBRW_CHAR *soi_ptr; // for debug/implementation can use

54 Document Number: 320237-001US

API Function Reference

 // bit 63 to indicate whether it is an
unique id or not

 };

} TBRW_STRING_OR_ID;

The usage model for strings is as follows:

When writing a field of type TBRW_STRING_OR_ID, fill in the value for soi_ptr, which
is a pointer to wchar_t. Do not worry about unique id’s when writing.

 When reading a field of type TBRW_STRING_OR_ID from a VTune analyzer file, the
field contains the unique id of a string, represented by soi_uniqueid, and not the
actual string itself. To get the actual string, call
TBRW_convert_uniqueid_to_string() is needed.
TBRW_convert_uniqueid_to_string() translates the soi_uniqueid to a
wchar_t string, pointed to by soi_ptr. The soi_ptr returned should not be copied
or stored, it’s valid only until the next TBRW_convert_uniqueid_to_string() is
called.

To save the string, you need to make a local copy of soi_ptr. If you have multiple
threads calling this function, make sure to put appropriate synchronization primitives in
place to make sure that one thread is done with the provided pointer (not just the call,
but the use of the returned pointer) before another thread makes a call to this routine.

9.1.1 Global Section Management

TBRW_U32 TBRW_reading_section(IN TBRW_PTR ptr, IN
TBRW_SECTION_IDENTIFIER section)
Tells the API you are going to be using section for reading.

TBRW_U32 TBRW_writing_section(IN TBRW_PTR ptr, IN
TBRW_SECTION_IDENTIFIER section)
Tells the API you will use the section for writing.

If the section already exists, this call results in an error.

TBRW_U32 TBRW_done_section(IN TBRW_PTR ptr, IN
TBRW_SECTION_IDENTIFIER section)
Tells the API you are done using section.

User Guide 55

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

If writing, this call also does limited validation of the data local to the section. Every
TBRW_reading_section() and TBRW_writing_section() must have a
corresponding TBRW_done_section().

9.1.2 Data Stream Management

TBRW_U32 TBRW_get_number_data_streams(IN
TBRW_PTR ptr, OUT TBRW_U32 *numStreams)

TBRW_U32 TBRW_reading_stream(IN TBRW_PTR ptr, IN
TBRW_U32 stream)
Tells the API you are going to be using the data stream for reading.

TBRW_U32 TBRW_writing_stream(IN TBRW_PTR ptr, IN
TBRW_U32 stream)
Tells the API you will use the data stream for writing

This function also sets the comment and type of the stream. If the data stream already
exists, this call results in an error.

TBRW_U32 TBRW_done_stream(IN TBRW_PTR ptr, IN
TBRW_U32 stream)
Tells the API you are done using the data stream.

If writing, this call also does limited validation of the data stream. Every
TBRW_reading_stream(IN TBRW_U32 stream) and TBRW_writing_stream(IN
TBRW_U32 stream) must have a corresponding TBRW_done_stream(IN TBRW_U32
stream).

9.1.3 Data Stream Section Management

TBRW_U32 TBRW_reading_stream_section(IN
TBRW_PTR ptr, IN TBRW_U32 stream,
TBRW_STREAM_SECTION_IDENTIFIER section)
Tells the API you will use a section of IN TBRW_U32 stream for reading.

56 Document Number: 320237-001US

API Function Reference

TBRW_U32 TBRW_writing_stream_section(IN
TBRW_PTR ptr, IN TBRW_U32 stream,
TBRW_STREAM_SECTION_IDENTIFIER section)
Tells the API you will use a section of IN TBRW_U32 stream for writing

This function also sets the comment and type of the stream. If the section of IN
TBRW_U32 stream already exists, this call results in an error.

TBRW_U32 TBRW_done_stream_section(IN TBRW_PTR
ptr, IN TBRW_U32 stream,
TBRW_STREAM_SECTION_IDENTIFIER section)
Tells the API you are done using section of IN TBRW_U32 stream.

If writing, this call also does limited validation of the section of IN TBRW_U32 stream.
Every TBRW_reading_stream_section(IN TBRW_U32 stream, section) and
TBRW_writing_stream_section(IN TBRW_U32 stream, section) must have a
corresponding TBRW_done_stream_section(IN TBRW_U32 stream, section).

9.2 Global Section Access

9.2.1 Hardware section

TBRW_U32 TBRW_ set_system(IN TBRW_PTR ptr, IN
TBRW_SYSTEM *system)
Write information about the entire system.

TBRW_U32 TBRW_ get_system(IN TBRW_PTR ptr, IN
TBRW_U32 size_of_buffer, OUT TBRW_SYSTEM
*buf_ptr, OPTIONAL OUT TBRW_U32 *size_buffer_used)
Read information about the entire system.

User Guide 57

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

9.2.2 Software Section

TBRW_U32 TBRW_set_host(IN TBRW_PTR ptr, IN
TBRW_HOST *host)
Set information about the host in the software section

TBRW_U32 TBRW_get_host(IN TBRW_PTR ptr, IN
TBRW_U32 size_of_buffer, IN void *buf_ptr, OPTIONAL
OUT TBRW_U32 *size_buffer_used)
Get information about the host from the software section

TBRW_U32 TBRW_set_os(IN TBRW_PTR ptr, IN
TBRW_OS *os)
Set information about the OS in the software section

TBRW_U32 TBRW_get_os(IN TBRW_PTR ptr, IN
TBRW_U32 size_of_buffer, IN void *buf_ptr, OPTIONAL
OUT TBRW_U32 *size_buffer_used)
Get information about the OS from the software section

TBRW_U32 TBRW_set_application(IN TBRW_PTR ptr, IN
TBRW_APPLICATION *application)
Set information about the application in the software section

TBRW_U32 TBRW_get_application(IN TBRW_PTR ptr, IN
TBRW_U32 size_of_buffer, IN void *buf_ptr, OPTIONAL
OUT TBRW_U32 *size_buffer_used)
Get information about the application from the software section

58 Document Number: 320237-001US

API Function Reference

9.2.3 Process/Thread Section

TBRW_U32 TBRW_add_process(IN TBRW_PTR ptr, IN
TBRW_PID *process)
Add information about a process to the process/thread section

TBRW_U32 TBRW_get_one_pid(IN TBRW_PTR ptr, IN
TBRW_U64 pid_index, OUT const TBRW_PID **p_pid)
Get one PID pointer, given a PID index.

The pointer is valid until the next call to BIND_get_one_pid is made.

TBRW_U32 TBRW_enumerate_processes(IN TBRW_PTR
ptr, IN TBRW_PID_CALLBACK *callback_func, IN void
*user_ptr, IN TBRW_U64 start_index)
Get information about the processes from the process/thread section.

The start_index parameter indicates which process index to start enumerating from.

TBRW_U32 TBRW_add_thread(IN TBRW_PTR ptr, IN
TBRW_TID *thread)
Add information about a thread to the process/thread section

TBRW_U32 TBRW_get_one_tid(IN TBRW_PTR ptr, IN
TBRW_U64 tid_index, OUT const TBRW_TID **p_tid)
Get one tid pointer, given a tid index.

The pointer is valid until the next call to TBRW_get_one_tid is made.

TBRW_U32 TBRW_enumerate_threads(IN TBRW_PTR
ptr, IN TBRW_TID_CALLBACK *callback_func, IN void
*user_ptr, IN TBRW_U64 start_index)
Get information about the threads from the process/thread section.

The start_index parameter indicates which thread index to start enumerating from.

User Guide 59

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

TBRW_U32 TBRW_bind_enumerate_threads(IN
TBRW_PTR ptr, IN BIND_TID_CALLBACK *callback_func,
IN void *user_ptr, IN TBRW_U64 start_index)
Get information about the TIDs and associated PID indexes.

The start_index parameter indicates which tid index to start enumerating from.
User_ptr is passed through to the callback function untouched.

TBRW_U32 TBRW_get_size_of_tid_bind_entry(IN
TBRW_PTR ptr, IN TBRW_U32 data_stream, OUT
TBRW_U32 *sizeof_tid_bind_entry)
Get the size of a single entry of the tid bind structure.

This function gets the size of a single entry of the tid bind structure, for a particular data
stream. You need to know the size of each entry in order to iterate through the tid bind
structure. There is no need to call TBRW_reading/done_stream() before/after
calling this function.

9.2.4 Module Section

TBRW_U32 TBRW_add_module(IN TBRW_PTR ptr, IN
TBRW_MODULE *module)
Add information about a module to the module section

TBRW_U32 TBRW_get_one_module(IN TBRW_PTR ptr, IN
TBRW_U64 module_index, OUT const TBRW_MODULE
**p_module)
Get one module pointer, given a module index.

The pointer is valid until the next call to TBRW_get_one_module is made.

TBRW_U32 TBRW_enumerate_modules(IN TBRW_PTR
ptr, IN TBRW_MODULE_CALLBACK *callback_func, IN void
*user_ptr, IN TBRW_U64 start_index)
Get information about the modules from the module section.

The start_index parameter indicates which thread index to start enumerating from.
User_ptr is passed through to the callback function untouched.

60 Document Number: 320237-001US

API Function Reference

TBRW_U32 TBRW_bind_enumerate_modules(IN
TBRW_PTR ptr, IN BIND_MODULE_CALLBACK
*callback_func, IN void *user_ptr, IN TBRW_U64
start_index)
Get information about the modules and associated PID index and PID name index.

The start_index parameter indicates which module index to start enumerating from.
User_ptr is passed through to the callback function untouched.

TBRW_U32 TBRW_get_size_of_module_bind_entry(IN
TBRW_PTR ptr, IN TBRW_U32 data_stream, OUT
TBRW_U32 *sizeof_module_bind_entry)
For a particular data stream, get the size of a single entry of the module bind structure.

You need to know the size of each entry in order to iterate through the module bind
structure. There is no need to call TBRW_reading/done_stream() before/after
calling this function.

9.2.5 Version Information Global Section

TBRW_U32 TBRW_set_version_info(IN TBRW_PTR
tbrw_ptr, IN TBRW_VERSION_INFO *version_info)
Write the version information global data

TBRW_U32 TBRW_get_version_info(IN TBRW_PTR
tbrw_ptr, IN TBRW_U32 size_of_buffer, IN void
*buf_ptr, OPTIONAL OUT TBRW_U32 *size_buffer_used)
Get the version information global data

9.2.6 User-defined Global Section

TBRW_U32 TBRW_set_user_defined_global(IN
TBRW_PTR ptr, IN TBRW_U32 size_of_data, IN void
*data_ptr)
Write user-defined global data.

User Guide 61

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

TBRW_U32 TBRW_get_user_defined_global(IN
TBRW_PTR ptr, IN TBRW_U32 size_of_buffer, IN void
*buf_ptr, OPTIONAL OUT TBRW_U32 *size_buffer_used)
Read user-defined global data.

9.3 Stream Section Access

9.3.1 Stream Information Section

TBRW_U32 TBRW_get_stream_info(IN TBRW_PTR
tbrw_ptr, IN TBRW_U32 stream, IN TBRW_U32
size_of_buffer, IN void *buf_ptr, OPTIONAL OUT
TBRW_U32 *size_buffer_used)
Get stream information data

TBRW_U32 TBRW_set_stream_info(IN TBRW_PTR
tbrw_ptr, IN TBRW_U32 stream, IN TBRW_STREAM_INFO
*stream_info)
Set stream information data.

9.3.2 Event Description Section

TBRW_U32 TBRW_add_event(IN TBRW_PTR ptr, IN
TBRW_U32 stream, IN TBRW_EVENT
*event_descriptor_entry)
Append a new event descriptor entry to the event descriptor.

62 Document Number: 320237-001US

API Function Reference

TBRW_U32 TBRW_enumerate_events(IN TBRW_PTR ptr,
IN TBRW_U32 stream, IN TBRW_EVENT_CALLBACK
*callback_func, IN void *user_ptr, IN TBRW_U64
start_index)
Enumerates the event descriptor entries in the event descriptor.

The start_index parameter indicates which event index to start enumerating from.

9.3.3 Data Description Section

TBRW_U32 TBRW_add_data_descriptor_entry(IN
TBRW_PTR ptr, IN TBRW_U32 stream, IN
TBRW_SAMPREC_DESC_ENTRY *data_descriptor_entry)
Appends a new data descriptor entry to the data descriptor.

TBRW_U32
TBRW_enumerate_data_descriptor_entries(IN
TBRW_PTR ptr, IN TBRW_U32 stream,
TBRW_DATA_DESC_CALLBACK *callback_func, void
*user_ptr)
Enumerates the data descriptor entries in the data descriptor.

9.3.4 Data Section

TBRW_U32 TBRW_add_data(IN TBRW_PTR ptr, IN
TBRW_U32 stream, IN TBRW_U32 size_of_data_entry, IN
void *data_entry)
Appends a data entry to the data section.

The data entry should be in the format described by the data description section.

TBRW_U32 TBRW_add_data_from_file(IN TBRW_PTR
ptr, IN TBRW_U32 stream, TBRW_CHAR *filename)
Appends data entries in a binary file to the data section.

User Guide 63

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

The data entries should be in the format described by the data description section.

TBRW_U32 TBRW_enumerate_data(IN TBRW_PTR ptr, IN
TBRW_U32 stream, IN TBRW_DATA_CALLBACK
*callback_func, IN void *user_ptr, IN TBRW_U64
start_index)
Gets data entries from the data section.

The data returned is in the format described by the data description section. The
start_index parameter indicates which data entry index to start enumerating from.

TBRW_U32 TBRW_bind_enumerate_data(IN TBRW_PTR
ptr, IN TBRW_U32 data_stream, IN
BIND_DATA_CALLBACK *callback_func, IN void *user_ptr,
IN TBRW_U64 start_index,)
For a particular data stream, get information about the sampling data and associated
modules, PIDs, TIDs.

The start_index parameter indicates which data index to start enumerating from.
User_ptr is passed through to the callback function untouched.

TBRW_U32 TBRW_get_size_of_data_bind_entry(IN
TBRW_PTR ptr, IN TBRW_U32 data_stream, OUT
TBRW_U32 *sizeof_data_bind_entry)
For a particular data stream, get the size of a single entry of the data bind structure.

You need to know the size of each entry in order to iterate through the data bind
structure. There is no need to call TBRW_reading/done_stream() before/after
calling this function.

TBRW_U32 TBRW_is_bound(IN TBRW_PTR ptr, IN
TBRW_U32 data_stream OUT TBRW_U32 *is_bound)
Check if a particular data stream in the file is bound or not.

Is_bound is set to 1 if it is bound, 0 otherwise. There is no need to call
TBRW_reading/done_stream() before/after calling this function.

64 Document Number: 320237-001US

API Function Reference

TBRW_U32 TBRW_dobind(IN TBRW_PTR ptr, IN
TBRW_U32 data_stream)
Do the binding for a particular data stream.

There is no need to call TBRW_writing/done_stream() before/after calling this
function.

TBRW_U32 TBRW_unbind(IN TBRW_PTR ptr, IN
TBRW_U32 data_stream)
Do unbind for a particular data stream.

There is no need to call TBRW_writing/done_stream() before/after calling this
function. This function is currently not implemented.

9.3.5 User-defined stream section

TBRW_U32 TBRW_set_user_defined_stream(IN
TBRW_PTR ptr, IN TBRW_U32 stream, IN TBRW_U32
size_of_data, IN void *data_ptr)
Write user-defined data to be stored with a stream.

TBRW_U32 TBRW_get_user_defined_stream(IN
TBRW_PTR ptr, IN TBRW_U32 stream, IN TBRW_U32
size_of_buffer, IN void *buf_ptr, OPTIONAL OUT
TBRW_U32 *size_buffer_used)
Read user-defined data stored with a stream.

9.4 String Conversion Utility Functions
The following are the utility functions that can be used to convert strings from utf8
format to wide char format and vice versa.

TBRW_U32 TBRW_convert_utf8_to_wcs (IN const char
*utf8, OUT wchar_t *wcs, INOUT TBRW_U32 *wcs_size);
Convert a UTF-8-encoded string into a native wchar_t string.

User Guide 65

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

A common usage is to call this function with *wcs_size = 0. This basically acts as a
query, and wcs can be NULL. As long the conversion still succeeds internally, the return
value is TBRW_BUFFER_TOO_SMALL, and *wcs_size is set to the number of characters
needed in the output buffer. You can then allocate your buffer accordingly and call this
API again.

TBRW_U32 TBRW_convert_wcs_to_utf8 (IN const
wchar_t *wcs, OUT char *utf8, INOUT TBRW_U32
*utf8_size);
Convert a native wchar_t string into a UTF-8-encoded string.

A common usage is to call this function with *utf8_size = 0. This basically acts as a
query, and utf8 can be NULL. As long the conversion still succeeds internally, the return
value is TBRW_BUFFER_TOO_SMALL, and *utf8_size is set to the number of
characters needed in the output buffer. You can then allocate your buffer accordingly
and call this again.

9.5 Callback Functions
You need to provide call back function pointers to be able to enumerate data from
various sections of the tb5 file as discussed in the previously. This section lists the
callback functions and their purpose. The callback functions are declared in
tbrw_types.h header file.

TBRW_U32 (*TBRW_DATA_CALLBACK)(void *data,
TBRW_U32 data_size, TBRW_U32 num_entries, void
*user_ptr);
Enumerates the data from the data stream section.

The data is returned in the void* data parameter along with data size and number of
data entries.

TBRW_U32 (*TBRW_PID_CALLBACK)(TBRW_PID *pid,
TBRW_U32 pid_data_size, TBRW_U32 num_entries, void
*user_ptr);
Retrieves the processes information from the tb5 data file.

This function also retrieves the process data size and number of process entries.

66 Document Number: 320237-001US

API Function Reference

TBRW_U32 (*TBRW_TID_CALLBACK)(TBRW_TID *tid,
TBRW_U32 tid_data_size, TBRW_U32 num_entries, void
*user_ptr);
Retrieves the thread related information from the tb5 data file.

This function also retrieves the thread data size and number of thread entries.

TBRW_U32
(*TBRW_MODULE_CALLBACK)(TBRW_MODULE *module,
TBRW_U32 module_data_size, TBRW_U32 num_entries,
void *user_ptr);
Retrieves the module information from the tb5 data file along with module data size and
number of modules.

TBRW_U32 (*TBRW_EVENT_CALLBACK)(TBRW_EVENT
*event, TBRW_U32 event_data_size, TBRW_U32
num_entries, void *user_ptr);
Retrieves the event information from the tb5 data file along with event data size and
number of events used for collecting the data.

TBRW_U32
(*TBRW_DATA_DESC_CALLBACK)(TBRW_SAMPREC_DESC
_ENTRY *data_desc, TBRW_U32 data_desc_size,
TBRW_U32 num_entries, void *user_ptr);
Retrieves the data descriptor entry information from the tb5 data file along with data
descriptor size and number of descriptors.

User Guide 67

 The VTune™ Performance Analyzer Reader/Writer API (TBRW)

10 Usage Example

10.1 Writing a Stream Section
The following pseudo code writes the stream section to the tb5 file. See the TBRW
examples in the VTune analyzer installation package for more details.

int main(int argc, char *argv[])

{

 TBRW_U32 ret_val;

void *tbrw_ptr;

int stream = 0;

wchar_t *err_text = NULL;

TBRW_STREAM_INFO stream_info;

//fill in stream_info

 ret_val = TBRW_open(&tbrw_ptr, file_name, access_mode);

 if (ret_val != VT_SUCCESS) {

 printf(“TBRW_open failed\n”);

 return 1;

}

 ret_val = TBRW_writing_stream(tbrw_ptr, stream);

 if (ret_val != VT_SUCCESS)

 {

 ret_val = TBRW_error_string(ret_val, &err_text);

 printf("TBRW_writing_stream number %d returned error \"%ls\"\n",
stream, err_text);

 ret_val = TBRW_abort_cleanup_and_close(tbrw_ptr);

 return 1;

 }

 ret_val = TBRW_writing_stream_section(tbrw_ptr, stream,
TBRW_STREAM_INFO_SECTION);

 //if error, handle as above

 ret_val = TBRW_set_stream_info(tbrw_ptr, stream,
&stream_info);

 //if error, handle as above

68 Document Number: 320237-001US

Usage Example

 ret_val = TBRW_done_stream_section(tbrw_ptr, stream,
TBRW_STREAM_INFO_SECTION);

 //if error, handle as above

 ret_val = TBRW_done_stream(tbrw_ptr, stream);

 //if error, handle as above

 ret_val = TBRW_close(tbrw_ptr);

 if (ret_val != VT_SUCCESS)

 {

 printf("TBRW_close failed\n");

 }

 return 0;

}//end main

User Guide 69

	1 About this Document
	1.1 Intended Audience
	1.2 Contents of the TBRW Package
	1.3 Goals
	1.4 Conventions and Symbols
	2 TBRW Examples
	2.1 print_tb5
	2.2 tbrw_reader
	2.3 tbrw_writer
	2.4 Building Examples
	2.5 Running the Examples

	3 Overview
	3.1 Concepts
	3.2 TB5 File Sections
	3.3 What Does “binding” Mean?
	3.4 Known Limitations

	4 Usage Model
	4.1 Single Data Stream
	4.2 Single Data Stream With Custom Data
	4.3 Multiple Data Stream With Custom Data

	5 Accessing a VTune™ Performance Analyzer File
	5.1 Writing a Global Section
	5.2 Writing a Data Stream
	5.3 Writing Stream Section
	5.4 Writing Data With a “set_” or “add_” Function
	5.5 Reading a Global Section
	5.6 Reading a Raw Data Stream
	5.7 Reading a Stream Section
	5.8 Reading Data with a “get_” Function
	5.9 Reading Data With the enumerate_ Function
	5.10 Binding and Unbinding a Data Stream
	5.11 Handling Errors

	6 Writing VTune™ Performance Analyzer Compatible Files
	6.1 How Bind Works
	6.2 Sampling Data Descriptors
	6.3 Sample Record Data Structure
	6.4 Required Sections
	6.5 64-bit Samples vs. 32-bit Samples

	7 FAQ
	7.1 The os_platform field in the TBRW_OS structure is an integer and described as an enumerated type. Do we use a generic "other" indicator ?
	7.2 32 bit PIDs will not be sufficient for 64 bit OS, should be TBRW_U64.
	7.3 Same applies for TID
	7.4 In TBRW_VERSION_INFO structure, what value should we use for the sampling_driver field? Do we use "other"?
	7.5 Event mapping will require a bit more detail. I don't see much I recognize
	7.6 Why does my call to TBRW_convert_uniqueid_to_string() sometimes return an "invalid string" error? Is this expected?
	7.7 Where can I find a list of error return codes?

	8 API Data Structure Reference
	8.1 Basic Types
	8.2 Section Identifiers
	8.3 Hardware Structures
	8.4 Software Structures
	8.5 Process/Thread Structures
	8.6 Module Structure
	8.7 Version Information Structure
	8.8 Stream Information Structure
	8.9 Stream Types
	8.10 Event Descriptor
	8.11 Data Descriptor
	8.12 Bind Structure

	9 API Function Reference
	9.1 High Level Functions
	9.2 Global Section Access
	9.3 Stream Section Access
	9.4 String Conversion Utility Functions
	9.5 Callback Functions

	10 Usage Example
	10.1 Writing a Stream Section

