The Software Optimization Cookbook

High-Performance Recipes for IA-32 Platforms

Second Edition

Richard Gerber
Aart J.C. Bik
Kevin B. Smith
Xinmin Tian

Intel PRESS
Contents

Preface xi

Part I Performance Tools and Concepts 1

Chapter 1 Introduction 3
Software Optimization 4
Software Optimization Pitfalls 4
The Software Optimization Process 6

Chapter 2 The Benchmark 9
The Attributes of the Benchmark 10
Repeatable (Required) 10
Representative (Required) 11
Easy to Run (Required) 11
Verifiable (Required) 11
Measure Elapsed Time (Optional) 12
Complete Coverage (Situation-dependent) 12
Precision (Situation-dependent) 12
Benchmark Examples 13
Chapter 3 Performance Tools 19
Timing Mechanisms 19
Optimizing Compilers 21
 Using the Intel® C++ and Fortran Compilers 22
 Optimizing for Specific Processors 23
 Writing Functions Specific to One Processor 25
 Other Compiler Optimizations 26
Types of Software Profilers 27
Performance Monitor 28
VTune™ Performance Analyzer 29
 Sampling 29
 Call Graph Profiling 31
Intel Compiler Codecov Profiler 33
Microsoft Visual C++ Profiler 34
Sampling Versus Instrumentation 36
Trial and Error, Common Sense, and Patience 37

Chapter 4 The Hotspot 41
What Causes Hotspots and Cold-spots? 43
More Than Just Time 44
Uniform Execution and No Hotspots 46

Chapter 5 Processor Architecture 51
Functional Blocks 52
 Two Cheeseburgers Please! 54
 Instruction Fetch and Decode 57
 Instruction Execution 59
 Retirement 62
Registers and Memory 63
The Software Optimization Cookbook

- Store Forwarding 120
- Data Alignment 122
- Compilers and Data Alignment 123
- Software Prefetch 124
- Detecting Memory Issues 125
 - Finding Page Misses 126
 - Finding Store Forwarding Problems 130
 - Finding L1 Cache Misses 131
 - Understanding Potential Improvement 133
- Fixing Memory Problems 135

Chapter 9 Loops 143
- Data Dependences 144
- Loop Distribution and Fusion 146
- Loop Peeling 149
- Loop Unrolling and Re-rolling 149
- Loop Interchanging 153
- Loop Invariant Computations 155
- Loop Invariant Branches 156
- Loop Invariant Results 157

Chapter 10 Slow Operations 159
- Slow Instructions 159
- Lookup Tables 161
- System Calls 164
- System Idle Process 168

Chapter 11 Floating Point 175
- Numeric Exceptions 176
- Flush-to-Zero and Denormals are Zero 179
- Precision 180
- Packed and Scalar Mode 184
- Float-to-Integer Conversions, Rounding 185
- Floor and Ceil Functions 186
- Floating-point Manipulation Tricks 186
 - FP-to-Integer Conversion 186
 - Square Root 187
 - Reciprocal Square Root 187
Chapter 12 SIMD Technology 191
 An Introduction to SIMD Technology 192
 MMX™ Technology 192
 Streaming SIMD Extensions 193
 Using SIMD Technology 194
 Automatic Vectorization 195
 C++ Class Libraries 196
 Intrinsics 197
 Inline Assembly Language 198
 Advantages and Disadvantages of the Four Methods 199
 SIMD Technology Considerations 200
 Determining Where to Use SIMD Technology 201
 Memory Alignment 201
 Data Layout 203
 Selecting an Appropriate Packed Data Type 205
 Compatibility of SIMD and x87 FPU Calculations 207

Chapter 13 Automatic Vectorization 211
 Compiler Switches for Vectorization 211
 Commonly Used Compiler Switches 211
 Compiler Switches Example 214
 Compiler Hints for Vectorization 215
 Commonly Used Compiler Hints 215
 Compiler Hints Examples 220
 Vectorization Guidelines 222
 Design and Implementation Considerations 222
 Usage of Vectorization Diagnostics 224
 Minimize Potential Aliasing and Side Effects 228
 Programming Style 232
 Target Architectures 233

Chapter 14 Processor-Specific Optimizations 239
 32-bit Intel® Architectures 239
 The Pentium® M Processor 242
 L1 Instruction Cache 243
 Instruction Decoding 243
 Instruction Latencies 244
Chapter 15 Introduction to Multiprocessing 253
Parallel Programming 254
Thread Management 256
 High-level Threading with OpenMP® 256
 Low-level Threading 259
Threading Goals 260
Threading Issues 261
Intel Compilers and Threading Tools 265

Chapter 16 Multithreading with OpenMP® 269
OpenMP® Key Elements 269
 Multithreading Execution Model 274
 OpenMP® Memory Model 276
 Limitations of OpenMP® 280
Compiling OpenMP® Programs 281
Automatic Parallelization 283
Multithreading Guidelines 286

Chapter 17 Taskqueuing and Advanced Topics 291
Taskqueuing—Intel Extension to OpenMP® 291
 Taskqueuing Execution Model 291
 Taskq and Task Constructs 294
 Threading the N-Queens Program: A Case Study 297
Thread-Level Pipeline Parallelism 302
Exploiting Nested Parallelism 306
Multi-level Parallelism 311
Thread Affinity Insight 313
Understanding Loop Scheduling 315
Part III Design and Application Optimization 321

Chapter 18 Case Study: Threading a Video Codec 323
Initial Performance of the H.264 Encoder 324
Parallelization of the H.264 Encoder 325
 Task and Data Domain Decomposition 325
 Slice-Level Parallelism 327
 Frame-Level Parallelism 328
Implementation Using Two Slice Queues 329
Implementation Using Task Queuing Model 331
Performance 333
 Tradeoff Between Increased Speed and Effective Compression 333
 Performance on Multiprocessor with HT Technology 335
Understanding the Performance 336
Multithreading Overhead 340
Further Performance Tuning 341
Summary of Threading 342

Chapter 19 Designing for Performance 345
Data Movement 346
Memory and Parallelism 347
Performance Experiments for Design 348
Algorithms 349

Chapter 20 Putting it Together: Basic Optimizations 353
Picking the Low-Hanging Fruit 353
The Application 354
Follow Along 356
The Benchmark 356
Interpret the Benchmark Results 357
Improving Float-to-Long Conversions 359
Parallelizing the Algorithm 360
Automatic Vectorization to the Rescue 360
Instruction Level Parallelism with the Intrinsics 362
Summary of Optimizations 363
The Software Optimization Cookbook

Chapter 21 Putting It Together: The Last Ten Percent 365
 Speed of Light 365
 Greater SIMD Efficiency 367
 One Final Optimization 370
 Summary of Optimizations 371

References 373
Index 379
Preface

The first edition of The Software Optimization Cookbook continues to be one of the most popular books offered by Intel Press. Feedback received from readers indicates that the book fills a gap between introductory textbooks that deal with program optimizations in general and advanced manuals that deal with all aspects of the Intel® architecture in particular. The introduction of the Intel Extended Memory 64 Technology (Intel EM64T) and multi-core processing together with the growing popularity of the Hyper-Threading Technology, OpenMP®, and multimedia extensions have outdated the first edition, however. The continuing demand for an intermediate level introduction to these topics has prompted Intel Press to ask three additional Intel experts to team up with the original author to provide an expanded and updated second edition of the book.

The Software Optimization Cookbook, Second Edition, provides updated recipes for high-performance applications on Intel platforms. Through simple explanations and examples, the authors show you how to address performance issues with algorithms, memory access, branch prediction, automatic vectorization, SIMD instructions, multiple threads, and floating-point calculations. Software developers learn how to take advantage of Intel EM64T, multi-core processing, Hyper-Threading Technology, OpenMP, and multimedia extensions. This book guides you through the growing collection of software tools, compiler switches, and coding optimizations, showing you efficient ways to improve the performance of software applications for Intel platforms. Software developers who want to understand the latest techniques for delivering more performance and to fine-tune their coding skills will benefit from this book.
Acknowledgements

The authors would like to thank everyone who has contributed in one way or the other to this book or to the Intel compilers and performance analysis tools. In particular, the authors are grateful for the efforts of the following people: Zia Ansari, Pete Baker, Mitch Bodart, Christopher Bord, Mark Buxton, Ryan Carlson, Yen-Kuang Chen, Joshua Chia, Martyn Corden, Robert Cox, William E. Damon III, Max J. Domeika, Milind Girkar, Koby Gottlieb, Grant Haab, Mohammad Haghighat, Jay Hoefligner, John Holm, Alexander Isaev, Michael Julier, Wei Li, Christopher Lishka, Diana King, Knud Kirkegaard, David Kreitzer, Tim Mattson, Eric Moore, Dan Macri, Andrey Naraikin, Kannan Narayanan, Clark Nelson, John Ng, Paul Peterson, Michael Ross, Hideki Saito, Sanjiv Shah, Ernesto Su, Sara Sarmiento, William Savage, Dale Schouten, David Sehr, Ronak Singhal, Kevin J. Smith, Stacey Smith, Craig Stoller, Bob Valentine, and Ronen Zohar.

A special thanks to our evaluators, Tim Carver formerly of Intel, Walt Dixon of GE Global Research, Lars Petter Endresen at Scandpower Petroleum Technology AS, James H. Hill of the United States Postal Service, Brian Kennedy at Jeppesen/Boeing, Jitendra Maheshwari at Zeesoft Inc., Kevin Ruland at the University of Kansas Natural History Museum, and Robert van Engelen at Florida State University, for providing valuable feedback on preliminary drafts of the book.

The people of Intel Press have been very helpful during the writing process. In particular, we would like to acknowledge the help of our editor David Spencer and content architect Stuart Goldstein for their kind and professional guidance during all stages of the publishing process.
Readers Can Help, Too

To prepare this second edition, the authoring team carefully reviewed the material in the first edition and updated most of it. In particular, Richard Gerber updated the putting-it-together material. Aart Bik updated Chapters 2, 9, and 12, and he added Chapter 13 on automatic vectorization. Kevin Smith updated Chapter 3 through 8, 10, 11, and 14. Xinmin Tian updated Chapter 15 and added Chapters 16, 17, and 18 on OpenMP parallelization.

Having done so, we are anxious to keep the book up-to-date. We would like to hear your questions and requests for clarification. We post contact information, errata, and additional materials on this book’s Web site.

Richard Gerber
Aart J. C. Bik

Kevin B. Smith
Xinmin Tian