Disclaimer and Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to:

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. Go to:

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Intel, Intel logo, Intel Core, VTune, Xeon are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

OpenCL and the OpenCL* logo are trademarks of Apple Inc. used by permission by Khronos.

Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

Copyright © 2010-2012 Intel Corporation. All rights reserved.
Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3,
and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804
Contents

About the OpenCL* and Microsoft DirectX* Video Acceleration Surface Sharing Sample
Path ... 5
Introduction ... 5
Motivation .. 6
Algorithm ... 6
Implementation Details ... 6
OpenCL* Implementation ... 6
Future Work and Enhancements .. 7
Project Structure ... 7
Additional Requirements .. 8
Controlling the Sample .. 8
References ... 8
About the OpenCL* and Microsoft DirectX* Video Acceleration Surface Sharing Sample

The OpenCL* and Microsoft DirectX* Video Acceleration (DXVA*) Surface Sharing sample demonstrates how to use Microsoft DXVA* and Intel® SDK for OpenCL* Applications together for video post processing and real-time rendering.

Path

<table>
<thead>
<tr>
<th>Location</th>
<th>Executable</th>
</tr>
</thead>
<tbody>
<tr>
<td><INSTALL_DIR>\samples\DXVASurfaceSharing</td>
<td>Win32\Release\DXVASurfaceSharing.exe – 32-bit executable</td>
</tr>
<tr>
<td></td>
<td>x64\Release\DXVASurfaceSharing.exe – 64-bit executable</td>
</tr>
<tr>
<td></td>
<td>Win32\Debug\DXVASurfaceSharing.exe – 32-bit debug executable</td>
</tr>
<tr>
<td></td>
<td>x64\Debug\DXVASurfaceSharing.exe – 64-bit debug executable</td>
</tr>
</tbody>
</table>

Introduction

Microsoft DXVA* provides a hardware-accelerated environment used in video decoding and rendering applications. The OpenCL* and Microsoft DirectX* Video Acceleration Surface Sharing sample uses OpenCL* for video post processing and DXVA* to render the video in real-time.
Motivation

The OpenCL* and Microsoft DirectX* Video Acceleration Surface Sharing sample demonstrates an OpenCL* implementation of video post processing on a shared DXVA* surface, showing how to:

- Share a DXVA* surface with OpenCL.
- Perform a few basic image post processing filters.

Algorithm

The algorithm consists of the following stages:

1. Create a simulated video frame and a shared DXVA* surface.
2. Use OpenCL* to write simulated video frame into DXVA* surface; convert from BGRA source frame to NV12 format.
3. Use OpenCL* to apply selected video filters on shared DXVA* surface.
4. Render the frame to screen via DXVA.

Implementation Details

The OpenCL* and Microsoft DirectX* Video Acceleration Surface Sharing sample demonstrates creating a shared DXVA* surface and then using OpenCL* to perform video post processing on a simulated video frame before rendering to the screen with DXVA.

OpenCL* Implementation

The first part of the application reads from a BMP image which is used as a simulated video frame. This image is in BGRA format and is passed to an OpenCL* kernel along with a shared DXVA* surface. This kernel does a conversion from BGRA to NV12 image format and writes the results to the DXVA* surface. The next stage of the application runs any image filter kernels that have been set to enabled. The included
image filters are invert, which inverts the image colors and Gaussian which applies a simple Gaussian blur to the image. After the image filter kernels are finished executing the DXVA* surface is released back to DXVA* and it is then rendered to the screen.

- **simple_write_shared.cl** – Accepts a buffer which is assumed 32bit BGRA image. As well as the Y and UV planes of a NV12 format shared DXVA* surface. Kernel reads a pixel from buffer, converts it from RGB to YUV format and then writes the resultant values out to the Y and UV surfaces.

- **simple_invert_shared.cl** – Accepts a pair of 2 image2D planes as read only for Y and UV planes, also takes 2 image2D planes as write only for output Y and UV planes. This kernel reads in the pixel values, inverts them via subtracting the pixel values from 1.0, and then writing out the result.

- **simple_gauss_shared.cl** – Accepts a pair of 2 image2D planes as read only for Y and UV planes, also takes 2 image2D planes as write only for output Y and UV planes. This kernel implements a simple version of a Gaussian image blur filter.

Future Work and Enhancements

The OpenCL* and Microsoft DirectX* Video Acceleration Surface Sharing sample currently contains three kernels. These kernels operate on a single pixel at a time. Their performance can be improved in future versions through changes and optimizations to process multiple pixels at a time. As a further improvement the underlying algorithm for the Gaussian blur kernel could be changed to a version that is more efficient with pixel reads.

Project Structure

The OpenCL* and Microsoft DirectX* Video Acceleration Surface Sharing sample project has the following structure:

- **DXVASurfaceSharing.h** – Includes and headers for DXVA* sharing sample. Also contains variable and function declarations for DXVA* sharing sample.
Additional Requirements

To build and run DXVA* Surface Sharing sample you need to install Microsoft Windows* SDK 7.0 or later on your system.

To run this sample, you must have the Intel® Processor Graphics enabled OpenCL* device available only on the 3rd Generation Intel® Core Processor Family.

Controlling the Sample

The sample can be controlled in the following ways

1. F1: enables/disables invert filter
2. F2: enables/disables Gaussian filter
3. F7: Enables/Disables simple frames per second calculation

References