

Programming

Guide

Intel® Microarchitecture Codename Nehalem Performance

Monitoring Unit Programming Guide

(Nehalem Core PMU)

Table of Contents

1. About this document .. 8

2. Nehalem-based PMU Architecture ... 9

3. The Nehalem Core PMU ... 11

3.1. Global Control and Status Registers .. 13

3.1.1. IA32_PERF_CAPABILITIES ... 13

3.1.2. IA32_DEBUGCTL .. 15

3.1.3. IA32_PERF_GLOBAL_CTRL ... 17

3.1.4. IA32_PERF_GLOBAL_STATUS .. 19

3.1.5. IA32_PERF_GLOBAL_OVF_CTRL .. 20

3.1.6. IA32_FIXED_CTR_CTRL .. 22

3.2. Programmable Counter Control Registers ... 24

3.2.1. PerfEvtSelX .. 24

3.3. Counter Registers .. 27

3.3.1. PERF_FIXED_CTRX and IA32_PMCX Registers .. 27

3.4. Off-core Response Event Programming .. 28

3.5. The PEBS Facility ... 32

3.5.1. IA32_PEBS_ENABLE ... 32

3.5.2. PEBS Record Format ... 34

3.5.3. Programming the PEBS Facility .. 35

3.6. Counter Prioritization .. 38

3.7. The Load Latency Facility ... 39

3.8. The Last Branch Record Facility ... 43

3.8.1. LBR Filtering ... 44

3.8.2. Storing Branch Trace Messages in the Branch Trace Store ... 45

3.8.3. Storing Branch Trace Messages in the Last Branch Record Stack 47

3.9. The RDPMC Instruction .. 50

4. Detecting the Nehalem Processor .. 52

4.1. CPUID identification .. 52

4.2. Architectural PerfMon .. 52

4.3. Other Considerations ... 54

List of Figures

Figure 1: IA32_PERF_CAPABILITIES MSR Definition 13

Figure 2: IA32_DEBUGCTL MSR Definition 15

Figure 3: IA32_PERF_GLOBAL_CTRL MSR Definition 18

Figure 4: IA32_PERF_GLOBAL_STATUS MSR Definition 19

Figure 5: IA32_PERF_GLOBAL_OVF_CTRL MSR Definition 21

Figure 6: IA32_FIXED_CTR_CTRL MSR Definition 23

Figure 7: PerfEvtSelX MSR Definition 25

Figure 8: PERF_FIXED_CTRX and IA32_PMCX MSR Definition 27

Figure 9: OFFCORE_RSP_X MSR Definition 29

Figure 10: IA32_PEBS_ENABLE MSR Definition 33

Figure 11: PEBS Programming Overview 36

Figure 12: IA32_DS_AREA MSR Definition 38

Figure 13: LFSR for Tagging Memory Load Instructions 40

Figure 14: PEBS_LD_LAT_THRESHOLD MSR Definition 42

Figure 15: LBR_SELECT MSR Programming 44

Figure 16: Format of Branch Trace Message in Branch Trace Store 45

Figure 17: Branch Trace Store Programming Overview 47

Figure 18: MSR_LASTBRANCH_x_FROM_IP MSR Definition 48

Figure 19: MSR_LASTBRANCH_x_TO_IP MSR Definition 49

Figure 20: MSR_LASTBRANCH_TOS MSR Definition 50

List of Tables

Table 1: List of Terms ... 5

Table 2: Performance Monitoring Architecture Comparison ... 11

Table 3: IA32_PERF_CAPABILITIES Programming .. 13

Table 4: IA32_DEBUGCTL Programming ... 15

Table 5: IA32_PERF_GLOBAL_CTRL Programming .. 18

Table 6: IA32_PERF_GLOBAL_STATUS Programming ... 19

Table 7: IA32_PERF_GLOBAL_OVF_CTRL Programming .. 21

Table 8: IA32_FIXED_CTR_CTRL Programming .. 23

Table 9: Summary of CTL bit Programming for Fixed Counters ... 24

Table 10: PerfEvtSelX Programming .. 25

Table 11: Offcore Response Events Encoding .. 28

Table 12: OFFCORE_RSP_X Event Programming .. 29

Table 13: Offcore Response Programming Example ... 31

Table 14: IA32_PEBS_ENABLE Programming ... 33

Table 15: PEBS Record Format .. 34

Table 16: Data Souce Encodings in Load Latency Records .. 41

Table 17: PEBS_LD_LAT_THRESHOLD Programming ... 42

Table 18: Programming the BTS Facility .. 43

Table 19: LBR_SELECT Programming ... 45

Table 20: MSR_LASTBRANCH_x_FROM_IP Programming ... 48

Table 21: MSR_LASTBRANCH_x_TO_IP Programming .. 49

Table 22: MSR_LASTBRANCH_TOS Programming .. 50

Table 23: Legal Index (ECX) Values for Executing the RDPMC Instruction 51

Table 38: Nehalem CPUID Processor Signatures ... 52

Table 39: CPUID.A Information ... 53

Table 40: NHM Core PMU Register List .. 57

Preface

This document contains advance information. While every effort has been made to

ensure the accuracy of the information contained herein, some errors may occur.

Please contact thomas.m.johnson@intel.com if you have questions or comments.

This document describes the programming interface to the performance monitoring

hardware on the Nehalem processor core. This document does not exhaustively

describe all of the performance monitoring events which may be counted in the

Nehalem. A detailed description of these events may be released separately.

Terms

Table 1: List of Terms

Term Definition

BTM Branch Trace Message. A message sent on the system bus

which external hardware can capture and thereby develop

a reconstruction of program control flow.

BTS Branch Trace Store. A memory buffer containing a

collection of branch trace messages.

Clear In reference to register programming, this means a bit is

programmed to binary zero (0).

CPL Current Privilege Level. The current privilege level at

which the processor is executing (Ring 0, 1, 2, or 3).

DCU Data cache. The cache closest to the processor core. This

cache provides data to the core with the minimum latency.

EBS Event Based Sampling. A technique in which counters are

pre-loaded with a large negative count, and they are

configured to interrupt the processor on overflow. When

the counter overflows the interrupt service routine

capture profiling data.

GO Globally Observable. The point in time at which data in the

machine is architecturally observable.

GP General Protection (fault).

ISR Interrupt Service Routine.

LBR Last Branch Record. A facility which provides branch trace

information either through special bus cycles on the

system bus, or through records written to a user defined

mailto:thomas.m.johnson@intel.com

memory buffer (the BTS).

LLC Last-level cache. The lowest level of cache, after which

memory requests must be satisfied by system memory.

MLC Mid-level cache. This is the intermediate level cache which

lies between the DCU and LLC.

MSR Model Specific Register. PMU counter and counter control

registers are implemented as MSR registers. They are

accessed via the rdmsr and wrmsr instruction. Certain

counter registers can be accessed via the rdpmc instruction.

NHM Nehalem. Specifically the Nehalem processor core.

PEBS Precise Event Based Sampling. A special counting mode in

which counters can be configured to overflow, interrupt

the processor, and capture machine state at that point.

PerfMon Short for Performance Monitoring

PMI Performance Monitoring Interrupt. This interrupt is

generated when a counter overflows and has been

programmed to generate an interrupt, or when the PEBS

interrupt threshold has been reached.

The interrupt vector for this interrupt is controlled

through the Local Vector Table in the Local APIC.

PMU Performance Monitoring Unit

RFO Read for ownership. When a cache line is written that

misses in the cache, it must first be read into the cache so

that the line exists in cache and can then be modified.

RO A bit is read-only.

RW A bit is readable and writeable.

Set In reference to register programming, this means a bit is

programmed to binary one (1).

SMM System Management Mode.

SMT Simultaneous Multi-threading.

Supervisor (SUP), or

privilege level 0

Supervisor state is the most privileged state of execution.

Typically operating system code executes in privilege level

0.

TBS Time Based Sampling. A technique in which a time base is

used to determine when to capture profiling data. This

time base can be a timer interrupt or the occurrence of a

certain number of other events, such clock ticks or

instructions retired.

Thread A hardware thread of execution. In other words, Hyper-

Threading Technology.

Uop Micro-operation. Macro instruction are broken down into

uops within the machine, and these uops are executed by

the execution units.

User (USR), or privilege

level 1, 2, or 3

Intel processors operate in privilege levels zero through

three, where lower numbered privilege levels operate in a

more privileged state. User (or privilege levels 1, 2, or 3)

refers to less privileged states of execution. User code

typically executes at privilege level 3.

WO A bit is write-only.

WO1 A bit is write-only, and should be written to a „1‟ (set).

1. About this document

This is a programmer‟s reference manual for the Nehalem core performance

monitoring units (PMU). This is targeted for current tool owners requiring

documentation updates for Nehalem based platforms. It is not intended for first time

tool developers or as a user analysis guide. Additional documents will be available at

a later date targeted at providing that information.

2. Nehalem-based PMU Architecture

Intel processor cores for many years included a Performance Monitoring Unit (PMU).

This unit provided the ability to count the occurrence of micro-architectural events

which expose some of the inner workings of the processor core as it executes code.

One usage of this capability is to create a list of events from which certain

performance metrics can be calculated. Software configures the PMU to count

events over an interval of time and report the resulting event counts. Using this

methodology, performance analysts can characterize overall system performance.

The PMU also provides facilities to generate a hardware interrupt through the Local

APIC integrated within the processor core or logical thread. In this case software can

pre-load event counter registers with a “sample after value,” in which case a

hardware interrupt is generated after the occurrence of N number of events. In the

interrupt handler software collects additional architectural state which provides

analysts with information regarding the performance of specific areas of application

code. This methodology is sometimes referred to as profiling the execution of an

application.

Products based on the Nehalem processor core include the capability to collect event

data under both of these scenarios. In addition, these products include various

platform features (uncore) integrated on the same die as the processor core. The

uncore is essentially everything on the processor chip that is not part of the core.

This includes point-to-point interconnect logic, memory controllers, and last-level

caches, among other things. The uncores also provide an additional PMU facility that

has the ability to interrupt the processor core in order that profiling information may

be collected. This document describes the Nehalem processor core PMU.

Platform Name Processor CPU Core Processor Code

Name

Chipset

Tylersburg-EP 2S Nehalem-EP 2S Nehalem Gainstown Tylersburg

Tylersburg-EP 1S Nehalem-EP 1S Nehalem Tylersburg

Boxboro-EX Nehalem-EX Nehalem Beckton Boxboro

The PMU differences between Nehalem-EP 2S and Nehalem-EP 1S will solely be

reflected in the event list. The programming and architecture list will not differ.

Supplemental documentation will be published for Nehalem-EX. Nehalem-EX uncore

has to significantly different architecture and therefore programming.

NNeehhaalleemm--EEPP 11SS CCPPUU SSuummmmaarryy

Power:

• 130W, 80W, 60W

Process Technology:

• 45nm CPU

Schedule:

• 2H ’08 Production

Performance/Features:

• 4 cores

• 8M on-chip Shared Cache

• Simultaneous Multi-
Threading capability (SMT)

• Intel® QuickPath

Interconnect up to 6.4
GT/s, each direct. per link

• Integrated Memory
Controller (DDR3)

• New instructions Platform Compatibility

• Tylersburg (TBG)

• ICH9

Socket:

• New LGA 1366 Socket

Nehalem-EP 1S

Core

8M Shared Cache

Core Core Core

Memory
Controller

Link
Controller

1x Intel QuickPath
interconnect
1 Link to IOH

 3x DDR3
channels

NNeehhaalleemm--EEPP 22SS CCPPUU SSuummmmaarryy

Power:

• 130W, 80W, 60W

Process Technology:

• 45nm CPU

Schedule:

• 2H ’08 Production

Performance/Features:

• 4 cores

• 8M on-chip Shared Cache

• Simultaneous Multi-
Threading capability (SMT)

• Intel® QuickPath

Interconnect up to 6.4
GT/s, each direct. per link

• Integrated Memory
Controller (DDR3)

• New instructions Platform Compatibility

• Tylersburg (TBG)

• ICH9

Socket:

• New LGA 1366 Socket

Nehalem-EP 2S

Core

8M Shared Cache

Core Core Core

Memory
Controller

Link
Controller

2x Intel
QuickPath

interconnect

 3x DDR3
channels

3. The Nehalem Core PMU

The table below summarizes the differences between the Nehalem core (NHM) PMU

features and that of previous products in the Intel® Core™ and Pentium 4® processor

families. Nehalem adheres to Architectural Performance Monitoring Version 3.

The table includes architectural and non-architectural features. Architectural

features are listed in the top of the table with intercepts highlighted.

Table 2: Performance Monitoring Architecture Comparison

Feature Description P4
Yonah

(V1*)

Merom

(V2*)

Penryn

(V2*)

Nehalem

(V3*)

Number of

General Counters

Number of general

counters per logical CPU.
18 2 2 2 4

Number of Fixed

Counters

Examples include

instructions retired, un-

halted core clock ticks,

un-halted reference

clock ticks, etc.

0 0 3 3 3

Number of

Selection and

Control Registers

Used to select events

and configure the

general counters.

45 ESCR, 18

CCCR
2 2 2 4

Architectural

Events

Architectural events

retain a consistent

definition and encoding

across product

implementations.

0 7 7 7 7

Global Counter

Controls

Single MSR to globally

enable and disable all

counters.

No Yes Yes Yes Yes

Freeze on

Overflow

Interrupt

Ability to freeze (disable)

counters on occurrence

of overflow interrupt.

Freeze occurs before

PMI delivery.

No No Yes Yes Yes

VT VMCS
Add global enable MSR

to guest and host VMCS.
No No No Yes Yes

Freeze Counters

on SMI

Add support for

save/disable/restore on

SMI.

No No No Yes Yes

AnyThread

Enable bit for counting

when an event is active

across any hardware

thread for fixed and

general counters.

Yes

Thread

specific

programming

No No No

Yes

Thread

independent

programming

PEBS

Precise Event Based

Sampling. Includes

mechanisms to store

branch and machine

state information on

counter overflow.

Limited to

certain

counters.

No

Limited to

certain

counters.

Limited to

certain

counters.

Available on

any counter.

Load Latency

A PEBS record extension

which allows sampling

load instruction latency,

load target address, and

instruction pointer.

No No No No Yes

Last Branch

Record (LBR)

Circular ring of MSRs

which record branch

target and source

instruction pointers.

8 LIP 4 EIP 4 EIP 4 LIP 16 EIP

Freeze LBR

Stack on

Overflow

Interrupt

Ability to freeze (disable)

capture of LBR

information on

occurrence of overflow

interrupt.

No No Yes Yes Yes

SMI Counter

Free running read-only

SMI counters (used like

time stamp counter).

No No No No Yes

Branch Trace

Store

Branch trace store

feature uses LBR MSRs.
Yes No Yes Yes Yes

*Denotes the version of Architectural Performance Monitoring supported by this product.

The Nehalem core supports event counting with seven event counters. Three of

these counters are fixed function counters; the events counted by each of these

counters are fixed in hardware. Software can determine whether counting is

enabled during user or supervisor code execution, or both. The four remaining

counters are programmable, and can be configured to count a variety of events.

There are some restrictions on individual counters. Fixed counters are controlled by

bit fields in a global control register. Programmable counters are controlled by a

separate control register, one for each counter.

PMU resources are available and must be programmed for each hardware thread

(logical processor), if threading is enabled. Otherwise they are programmed for each

core. PMU resources available in each thread do not accumulate to the core when

hardware threading is disabled. Thus the PMU programming model remains

consistent in any case. To successfully program all PMU resources, software must

affinitize itself to each processor the operating system exposes. Counter registers

are 48 bits in extent.

Writing a binary one to any reserved bit in any counter or counter control register is

undefined and may cause a general protection fault.

The following sections describe the programming the counter and counter control

registers used to program the NHM PMU.

3.1. Global Control and Status Registers

There are a set of global control and status registers which control the fixed and

programmable counters, and provide status indications of the NHM PMU in general.

The following sections describe these global registers.

3.1.1. IA32_PERF_CAPABILITIES

This register provides availability status information regarding the capabilities

supported by this implementation of the performance monitoring hardware. This is a

read-only register.

Figure 1: IA32_PERF_CAPABILITIES MSR Definition

Table 3: IA32_PERF_CAPABILITIES Programming

Bit Bit

Position

Access Description

Reset Value: 0x00000000.00001C3

 0 7

15

23

31

32 47

55

63

LBR_FMT

PEBS_TRAP

PEBS_ARCH_REGS

PEBS_REC_FMT

Reserved

.

SMM_FRZ

39

LBR_FMT 5:0 RO

Branch to/from information contains:

00000b: 32-bit offset in current code

segment.

00001b: 64-bit LIP

00010b: 64-bit EIP

PEBS_TRAP 6 RO

If clear indicates the PEBS assist is trap-like.

The assist occurs at the end-of-macro (EOM)

instruction boundary after machine state is

committed. The PEBS record will reflect the

state of the machine after this instruction

executed.

If set, indicates the PEBS assist is fault-like.

The assist will occur before the current

instruction retires, and the PEBS record will

reflect the pre-retirement state of the

machine.

See section 3.5.2 for more information on

the PEBS record.

PEBS_ARCH_REG 7 RO

If set, indicates that the PEBS record

contains the architectural registers in

addition to the return instruction pointer and

flags. If clear, only return the instruction

pointer and flags are recorded.

PEBS_REC_FMT 11:8 RO

0000b: Only the return instruction pointer,

flags, and general purpose registers are

recorded in the PEBS record.

0001b: In addition to the information

contained in option 0 above, the PEBS record

contains the global overflow status and load

latency information.

Other values are reserved.

SMM_FRZ 12 RO

If set, indicates this implementation has the

ability to freeze the PMU on entry to SMM

mode. This means all counters and profiling

hardware will be disabled while in SMM mode.

Upon exit from SMM mode, normal operation

will resume. No freeze capability is

supported otherwise.

3.1.2. IA32_DEBUGCTL

This register controls tracing, single stepping, and last branch record (LBR) collection,

and certain freeze functions related to the PMU. The programming for this register

is summarized in the figure and table below.

Figure 2: IA32_DEBUGCTL MSR Definition

Table 4: IA32_DEBUGCTL Programming

Bit Bit

Position

Access Description

LBR 0 RW When set, the processor records a

running trace of the most recent

branches, interrupts, and

exceptions taken by the processor

in the LBR stack. Because last

branch recording and branch trace

messages share common

hardware, this bit should not be

set at the same time as the TR bit.

BTF 1 RW When set, the processor treats

the TF flag in the EFLAGS register

Reset Value: 0x00000000.00000000

TR

 0 7

15

23

31

32 47

55

63

LBR

BTF

BTS

Reserved

.

BTINT

BTS_OFF_OS

BTS_OFF_USR

FRZ_LBRS_ON_PMI

FRZ_PERFMON_ON_PMI

UNCORE_PMI_EN

SMM_FRZ

39

as a „single-step on branches‟ flag

rather than a „single-step on

instructions‟ flag. This will cause a

debug exception to be posted

when a taken branch occurs while

TF is set.

TR 6 RW When set, branch trace messages

are enabled. Upon detection of a

branch, interrupt, or exception the

processor sends a branch record

to the system bus as a branch

trace message (BTM).

BTS 7 RW When set, the flag enables branch

trace store (BTS) facilities to log

BTMs to a memory buffer (the

Branch Trace Store).

BTINT 8 RW When set, the BTS facilities

generate an interrupt when the

BTS buffer is full. When clear, the

BTS buffer behaves as a circular

buffer and older records are

overwritten.

BTS_OFF_OS 9 RW When set, BTMs will not be

written to the system bus or the

BTS when the CPL is equal to zero.

BTS_OFF_USR 10 RW When set, BTMs will not be

written to the system bus or the

BTS when the CPL is not equal to

zero.

FRZ_LBRS_ON_PMI 11 RW When set, the LBR stack is frozen

on a hardware PMI request.

Software must explicitly re-enable

the LBR capture mechanism.

Note: the freeze is currently

triggered by counter overflow,

and may result in freezing the LBR

stack sooner than expected.

FRZ_PERFMON_ON_PMI 12 RW When set, a PMI request clears

each of the enable bits in the

IA32_PERF_GLOBAL_CTRL MSR,

disabling all event counting.

Software must explicitly re-enable

the counters by setting the enable

bits in the

IA32_PERF_GLOBAL_CTRL

register before exiting the ISR.

UNCORE_PMI_EN 13 RW When set, this logical processor is

enabled to receive an uncore

counter overflow interrupt.

SMM_FRZ 14 RW When set, event counters are

disabled while the processor is in

system management mode.

3.1.3. IA32_PERF_GLOBAL_CTRL

This register globally controls the fixed and programmable counters. If a control bit

in this register is clear, all other control register programming for the corresponding

counter will be ignored and the counter will not count.

Counters that are disabled by this register cannot count, overflow, or subsequently

generate overflow interrupts. It is possible that a disabled counter may generate a

PEBS assist. This can occur as follows. While the counter is enabled it can overflow

(to zero) and arm the PEBS hardware. The next event (the counter transitions from

zero to one) will cause the PEBS assist to occur. At this point the PEBS assist will

occur even if an intervening write to this register disables the counter.

Note that the state of the IA32_PERF_GLOBAL_CTRL register is preserved across

entry and exit to probe mode (halting with an ITP). Writes to this register during

probe mode will be lost upon exit from probe mode.

Figure 3: IA32_PERF_GLOBAL_CTRL MSR Definition

Table 5: IA32_PERF_GLOBAL_CTRL Programming

Bit Bit

Position

Access Description

EN_PC0 0 RW Enable bit for programmable counter 0. If clear,

disable the counter. If set, enable the counter.

EN_PC1 1 RW Enable bit for programmable counter 1. If clear,

disable the counter. If set, enable the counter.

EN_PC2 2 RW Enable bit for programmable counter 2. If clear,

disable the counter. If set, enable the counter.

EN_PC3 3 RW Enable bit for programmable counter 3. If clear,

disable the counter. If set, enable the counter.

EN_FC0 32 RW Enable bit for fixed counter 0. If clear, disable

the counter. If set, enable the counter.

EN_FC1 33 RW Enable bit for fixed counter 1. If clear, disable

the counter. If set, enable the counter.

EN_FC2 34 RW Enable bit for fixed counter 2. If clear, disable

the counter. If set, enable the counter.

Software must read-modify-write or explicitly clear reserved bits.

 0 7

15

23

31

32 39 47

55

63

EN_PC0

EN_PC1

EN_PC2

EN_PC3

EN_FC0

EN_FC1

EN_FC2

Reserved

.

Reset Value: 0x00000000.0000000F

3.1.4. IA32_PERF_GLOBAL_STATUS

This register indicates the overflow status of each of the fixed and programmable

counters. The upper bits provide additional status information of the PerfMon

facilities. A set bit indicates an overflow has occurred in the corresponding counter.

Overflow status bits in this register are cleared by writing the

IA32_PERF_GLOBAL_OVF_CTRL register.

Status bit indications in this register have no affect on interrupts or pending

interrupts.

Figure 4: IA32_PERF_GLOBAL_STATUS MSR Definition

Table 6: IA32_PERF_GLOBAL_STATUS Programming

Bit Bit

Position

Access Description

OVF_PC0 0 RO Indicates the overflow status of

programmable counter 0. If this bit is clear no

overflow occurred. If set then overflow

occurred.

OVF_PC1 1 RO Indicates the overflow status of

programmable counter 1. If this bit is clear no

overflow occurred. If set then overflow

occurred.

 0 7 15

23

31

32 39 47

55

63

OVF_PC0

OVF_FC0

Reserved

.

OVF_PC1

OVF_PC2

OVF_PC3

OVF_FC1

OVF_FC2

CondChg

PEBS_Ovf

UNC_Ovf

Reset Value: 0x00000000.00000000

CTL_FC1

7

OVF_PC2 2 RO Indicates the overflow status of

programmable counter 2. If this bit is clear no

overflow occurred. If set then overflow

occurred.

OVF_PC3 3 RO Indicates the overflow status of

programmable counter 3. If this bit is clear no

overflow occurred. If set then overflow

occurred.

OVF_FC0 32 RO Indicates the overflow status of fixed counter

0. If this bit is clear no overflow occurred. If

set then overflow occurred.

OVF_FC1 33 RO Indicates the overflow status of fixed counter

1. If this bit is clear no overflow occurred. If

set then overflow occurred.

OVF_FC2 34 RO Indicates the overflow status of fixed counter

2. If this bit is clear no overflow occurred. If

set then overflow occurred.

UNC_Ovf 61 RO Indicates a counter in the uncore overflowed.

Software must perform further queries to

determine which specific counter overflowed.

PEBS_Ovf 62 RO Indicates that the PEBS buffer threshold was

reached and microcode scheduled a

performance interrupt to indicate this

condition.

CondChg 63 RO Indicates that the state of the PerfMon

hardware has changed. A change in this bit

indicates the hardware has become available

or unavailable. Software can execute CPUID

leaf 0xA to confirm the availability of PerfMon

hardware. This is a sticky bit, and must be

explicitly cleared by writing to one the

corresponding bit in the

IA32_PERF_GLOBAL_OVF_CTRL MSR.

Software must read-modify-write or explicitly clear reserved bits.

3.1.5. IA32_PERF_GLOBAL_OVF_CTRL

The IA32_PERF_GLOBAL_OVF_CTRL provides software the ability to clear status

bits set in the IA32_PERF_GLOBAL_STATUS register, described in the preceding

section. This is a write-only register. To clear overflow or condition change status in

the global status register, software must write the corresponding bits in this register

to binary one.

Figure 5: IA32_PERF_GLOBAL_OVF_CTRL MSR Definition

Table 7: IA32_PERF_GLOBAL_OVF_CTRL Programming

Bit Bit

Position

Access Description

CLR_OVF_PC0 0 WO1 Setting this bit will clear the status bit

in the IA32_PERF_GLOBAL_STATUS

register for programmable counter 0.

CLR_OVF_PC1 1 WO1 Setting this bit will clear the status bit

in the IA32_PERF_GLOBAL_STATUS

register for programmable counter 1.

CLR_OVF_PC2 2 WO1 Setting this bit will clear the status bit

in the IA32_PERF_GLOBAL_STATUS

register for programmable counter 2.

CLR_OVF_PC3 3 WO1 Setting this bit will clear the status bit

in the IA32_PERF_GLOBAL_STATUS

register for programmable counter 3.

 0 7 15

23

31

32 39 47

55

63

CLR_OVF_PC0

CLR_OVF_FC0

Reserved

.

CLR_CondChg

CLR_PEBS_Ovf

CLR_UNC_Ovf

CLR_OVF_PC1

CLR_OVF_PC2

CLR_OVF_PC3

CLR_OVF_FC1

CLR_OVF_FC2

Reset Value: 0x00000000.00000000

CLR_OVF_FC0 32 WO1 Setting this bit will clear the status bit

in the IA32_PERF_GLOBAL_STATUS

register for fixed counter 0.

CLR_OVF_FC1 33 WO1 Setting this bit will clear the status bit

in the IA32_PERF_GLOBAL_STATUS

register for fixed counter 1.

CLR_OVF_FC2 34 WO1 Setting this bit will clear the status bit

in the IA32_PERF_GLOBAL_STATUS

register for fixed counter 2.

CLR_UNC_Ovf 61 WO1 Setting this bit clears the UNC_Ovf

status bit in the

IA32_PERF_GLOBAL_STATUS register.

CLR_PEBS_Ovf 62 WO1 Setting this bit clears the PEBS_Ovf

status bit in the

IA32_PERF_GLOBAL_STATUS register.

CLR_CondChg 63 WO1 Setting this bit clears the CondChg

status bit in the

IA32_PERF_GLOBAL_STATUS register.

Note: Writing any value other than „1‟ to these bits will be ignored.

3.1.6. IA32_FIXED_CTR_CTRL

This register control the fixed counters, and determines whether these counters

count in USR or SUP mode, or both, and whether these counters are enabled to

generate performance interrupts.

Figure 6: IA32_FIXED_CTR_CTRL MSR Definition

Table 8: IA32_FIXED_CTR_CTRL Programming

Bit Bit

Position

Access Description

CTL_FC0 1:0 RW See Table 9.

AnyThr_FC0 2 RW If clear the counter will count only

events which occur on its own thread. If

set, the counter will count events that

occur on all threads in the core

containing this thread (logical processor).

INT_FC0 3 RW When set counter 0 is enabled to

generate overflow interrupts. Interrupts

are disabled if clear.

CTL_FC1 5:4 RW See Table 9.

AnyThr_FC1 6 RW If clear the counter will count only

events which occur on its own thread. If

set, the counter will count events that

occur on all threads in the core

containing this thread (logical processor).

CTL_FC0

 0 7 15

23

31

32 39 47

55

63

Reserved

.

INT_FC0

AnyThr_PC0

CTL_FC2

AnyThr_PC2

INT_FC2

CTL_FC1

Anythr_PC1

INT_FC1

Reset Value: 0x00000000.00000000

INT_FC1 7 RW When set counter 1 is enabled to

generate overflow interrupts. Interrupts

are disabled if clear.

CTL_FC2 9:8 RW See Table 9.

AnyThr_FC2 10 RW If clear the counter will count only

events which occur on its own thread. If

set, the counter will count events that

occur on all threads.

INT_FC2 11 RW When set counter 2 is enabled to

generate overflow interrupts. Interrupts

are disabled if clear.

Software must read-modify-write or explicitly clear reserved bits.

Table 9: Summary of CTL bit Programming for Fixed Counters

CTL_FCx

Bit Field1

Description

00b Disable the counter.

01b Count events when the logical processor is executing in privilege

level 0.

10b Count events when the logical processor is executing in privilege

levels one, two, or three.

11b Count events when the logical processor is executing at any

privilege level.

1 CTL_FC0, CTL_FC1, or CTL_FC2.

The all/my thread control bit (TnyThr_FCx) is always readable and writeable, even

when Hyper-Threading Technology is disabled on the NHM processor. If Hyper-

Threading Technology is disabled then setting these bits will have no effect.

3.2. Programmable Counter Control Registers

This section describes the control registers for the four programmable counters.

3.2.1. PerfEvtSelX

The PerfEvtSelX registers control the four programmable counters. Using these

control registers, software can select the event to be counted, and the constraints

under which those events are counted. Each counter must be locally enabled by this

register, as well as globally enabled, in order to operate correctly.

The layout of this register is similar to previous Intel Core Architecture

implementations. However, the pin control (PC) bit is now reserved. Also, NHM is

the first Intel Core Architecture processor that implements SMT. NHM implements

an additional event modifier bit, AnyThr, which controls counting events for the

counter‟s logical processor only, or for all logical processors in the core which

contains the counter.

Figure 7: PerfEvtSelX MSR Definition

Table 10: PerfEvtSelX Programming

Bit Bit Position Access Description

EVTSEL 7:0 RW Selects the event logic unit used to detect

micro-architectural conditions.

EVTMSK 15:8 RW Condition qualifiers for the event selection logic

specified in the EVTSEL field.

USR 16 RW When set, indicates that the event specified by

bit fields EVTSEL and EVTMSK is counted only

when the logical processor is operating and

privilege level 1, 2, or 3.

EVTSEL

 0 7 15

23

31

32 39 47

55

63

EVTMSK

OS

USR

E

INT

AnyThr

EN

INV

CMASK

Reset Value: 0x00000000.00000000

Reserved

.

OS 17 RW When set, indicates that the event specified by

bit fields EVTSEL and EVTMSK is counted only

when the logical processor is operating and

privilege level 0.

E 18 RW When set, causes the counter to increment

when a deasserted to asserted transition

occurs for the conditions that can be expressed

by any of the fields in this register.

INT 20 RW When set, the logical processor generates an

exception through its local APIC on counter

overflow. Counters only count up, and

interrupts are generated on a transition from

maximum count to zero. There will be some

latency from the time the counter triggers the

interrupt until the interrupt handler is invoked.

AnyThr 21 RW When clear, the counter increments only when

event conditions are satisfied in its logical

processor. When Set, the counter increments

when event conditions are satisfied for any

logical processor in the core in which this

counter resides.

EN 22 RW When clear, this counter is locally disabled.

When set, this counter is locally enabled.

INV 23 RW When clear, the CMASK field is interpreted as

greater than or equal to. When set, the CMASK

field is interpreted as less than.

CMASK 31:24 RW When this field is clear, it has no effect on

counting. When set to a value other than zero,

the logical processor compares this field to the

event counts on each core clock cycle. If INV is

clear and the event counts are greater than or

equal to this field, the counter is incremented

by one. If INV is set and the event counts are

less than this field, the counter is incremented

by one. Otherwise the counter is not

incremented.

Bits [31:29] are reserved to 0. Software must

write these bits to zero.

Software must read-modify-write or explicitly clear reserved bits.

The all/my thread control bit (AnyThr) is always readable and writeable, even when

Hyper-Threading Technology is disabled on the NHM processor. If Hyper-Threading

Technology is disabled then setting this bit will have no effect.

3.3. Counter Registers

This section describes the three fixed and four programmable counter registers.

3.3.1. PERF_FIXED_CTRX and IA32_PMCX Registers

Each counter register is 48-bits long. Counter registers can be cleared, or pre-loaded

with count values as desired. This latter method is often used to set the point at

which the counter will overflow, which is useful in event-based sampling. When

writing the programmable counters using the wrmsr instruction, bits 32 through 47

cannot be written directly. They are sign-extended based on the value written to bit

31 of the counter register. When using the PEBS facility to re-load the

programmable counters the entire 48-bit value is loaded from the DS Buffer

Management area without any sign extension.

Previous implementations of Intel Core Architecture contained counters which were

limited to 40 bits in length. Nehalem implements counters 48 bits in length. Counter

width can be enumerated using the features in the CPUID instruction. See section

4.2 for more information.

Figure 8: PERF_FIXED_CTRX and IA32_PMCX MSR Definition

 0 7 15

23

31

32 39 47

55

63

Reset Value: 0x00000000.00000000

Reserved

.

3.4. Off-core Response Event Programming

NHM provides the ability to program two counters to report off-core response

counts. These counters are programmed to detect the occurrence of off-core data

requests that return with a particular response. To enable these events, software

programs the PerfEvtSelX register as shown in the following table. This capability is

not available in processors previous to NHM.

Table 11: Offcore Response Events Encoding

Event Encoding

PerfEvtSelX[7:0]

Event Mask

PerfEvtSelX[15:8]

Extra MSR to

Program

0xB7 0x01 0x1A6

(OFFCORE_RSP_0)

0xBB 0x01 0x1A7

(OFFCORE_RSP_1)

After programming the appropriate event in the PerfEvtSelX register, software must

also program the “extra” register as shown in the figure below. To properly program

this extra register, software must set at least one request type and one response

type bit. Otherwise, the event count reported will be zero. It is legal and useful to

set multiple request and response type bits in order to obtain various classes of off-

core response events.

Figure 9: OFFCORE_RSP_X MSR Definition

Table 12: OFFCORE_RSP_X Event Programming

Bit Bit

Position

Access Description

DMND_DATA_RD

0 RW

Counts the number of demand

and DCU prefetch data reads of

full and partial cachelines as well

as demand data page table entry

cacheline reads. Does not count

MLC data read prefetches or

instruction fetches.

DMND_RFO
1 RW

Counts the number of demand

and DCU prefetch read for

ownership (RFO) requests

DMND_DATA_RD

 0 7 15

23

31

32 39 47

55

63

Reset Value: 0x00000000.00000000 Reserved

.

DMND_RFO

DMND_IFETCH

WB

PF_DATA_RD

PF_RFO

PF_IFETCH

OTHER

MIN_HIT_MINLAT

LLC_HIT_CLEAN_SNP

LLC_HIT_DIRTY_SNP

LLC_MISS_REMOTE_SCRUBBED

LLC_MISS_REMOTE_FORWARDED

LLC_MISS_REMOTE_MEM

LLC_MISS_LOCAL_MEM

NON_DRAM

Request

Types

Response

Types

generated by a write to data

cacheline. Does not count MLC

RFO prefetches.

DMND_IFETCH

2 RW

Counts the number of demand

and DCU prefetch instruction

cacheline reads. Does not count

MLC code read prefetches.

WB

3 RW

Counts the number of writeback

(modified to exclusive)

transactions.

PF_DATA_RD

4 RW

Counts the number of data

cacheline reads generated by the

MLC prefetchers.

PF_RFO

5 RW

Counts the number of read for

ownerships (RFO) requests

generated by the MLC

prefetchers.

PF_IFETCH

6 RW

Counts the number of code reads

generated by the MLC

prefetchers.

OTHER

7 RW

Counts these transactions: read

code cacheline generated by

monitor instruction, LLC

invalidate, I/O, Write data partial

or full cacheline, USWC stores

and non-temporal stores, cache

line flush instruction generated

by a cache line flush, fence, lock,

unlock, or split-lock.

UNCORE_HIT

8 RW

LLC Hit: local or remote home

requests that hit last level cache

in the uncore with no coherency

actions required (snooping).

OTHER_CORE_HIT_SNP

9 RW

LLC Hit: local or remote home

requests that hit the last level

cache and was serviced by

another core with a cross core

snoop where no modified copies

were found. (clean).

OTHER_CORE_HITM

10 RW

LLC Hit: local or remote home

requests that hit the last level

cache and was serviced by

another core with a cross core

snoop where modified copies

were found. (HITM)

REMOTE_CACHE_HITM

11 RW

LLC Miss: local or remote home

requests that missed the last

level cache and was serviced by

forwarded data following a cross

package snoop where a modified

copy was found and coherency

actions were taken. (Not

supported until WSM-T0)

REMOTE_CACHE_FWD

12 RW

LLC Miss: local homed requests

that missed the last level cache

and was serviced by forwarded

data following a cross package

snoop where no modified copies

found. (Remote home requests

are not counted).

REMOTE_DRAM

13 RW

LLC Miss: remote home requests

that missed the last level cache

and were serviced by remote

DRAM.

LOCAL_DRAM

14 RW

LLC Miss: local home requests

that missed the last level cache

and were serviced by local

DRAM.

IO_CSR_MMIO
15 RW

None: Non-DRAM requests that

are serviced by IOH.

As an example, assume software wishes to count demand data read requests that

are satisfied by the LLC. To accomplish this, software could program the PMU

registers as shown in the table below.

Table 13: Offcore Response Programming Example

Register MSR

Address

Programming Comments

PerfEvtSel0 0x186 0x4301B7 Enable counting of off-core

responses occurring in user and

supervisor code.

OFFCORE_RSP_0 0x1A6 0x17 Demand data reads satisfied by the

LLC. Data could be owned by this

core, or forwarded as clean or

modified by another core on this

package.

IA32_PMC0 0xC1 -- This counter will accumulate the

event counts.

3.5. The PEBS Facility

This section details the PEBS facility as implemented in the NHM processor. The

PEBS facility allows software to profile workload behavior relative to a limited set of

events. Event counters are preloaded so they will reach an overflow condition after

the occurrence of a predefined number of events. On overflow of a PEBS-enabled

counter, the PEBS facility is armed. At the occurrence of the next precise (PEBS)

event, the processor will take an assist and capture machine state in a predefined

memory buffer.

3.5.1. IA32_PEBS_ENABLE

Counters can be configured to periodically capture machine state and load latency

information as shown in Table 14. The IA32_PEBS_ENABLED register is used to

enable this facility.

Previous implementations of Intel Core Architecture supported the PEBS facility in

only one counter (counter 0). NHM supports PEBS mode in all four programmable

counters. The ability to capture load latency information is also new to NHM and will

be discussed in a subsequent section.

Figure 10: IA32_PEBS_ENABLE MSR Definition

Table 14: IA32_PEBS_ENABLE Programming

Bit Bit Position Access Description

PEBS_EN_CTR0 0 RW Enable counter 0 to capture machine

state on overflow.

PEBS_EN_CTR1 1 RW Enable counter 1 to capture machine

state on overflow.

PEBS_EN_CTR2 2 RW Enable counter 2 to capture machine

state on overflow.

PEBS_EN_CTR3 3 RW Enable counter 3 to capture machine

state on overflow.

LL_EN_CTR0 32 RW Enable counter 0 to capture load

latency information.

LL_EN_CTR1 33 RW Enable counter 1 to capture load

latency information.

LL_EN_CTR2 34 RW Enable counter 2 to capture load

 0 7 15

23

31

32 39 47

55

63

PEBS_EN_CTR0

Reset Value: 0x00000000.00000000

Reserved

.

PEBS_EN_CTR1

PEBS_EN_CTR2

PEBS_EN_CTR3

LL_EN_CTR0

LL_EN_CTR1

LL_EN_CTR2

LL_EN_CTR3

latency information.

LL_EN_CTR3 35 RW Enable counter 3 to capture load

latency information.

Software must read-modify-write or explicitly clear reserved bits.

3.5.2. PEBS Record Format

When a counter is enabled to capture machine state (PEBS_EN_CTRx = 1), the

processor will write machine state information to a memory buffer specified by

software as detailed below. In this mode, when the counter overflows from

maximum count to zero, the PEBS hardware is armed. Upon occurrence of the next

PEBS event, the PEBS hardware triggers and causes a PEBS record to be written.

The format of the PEBS record is indicated by the bit field

IA32_PERF_CAPABILITIES[11:8].

PEBS assists on NHM are trap-like (see PEBS_TRAP in Table 3). The return

instruction pointer (RIP) reported in the PEBS record will point to the instruction

after (+1) the instruction that causes the PEBS assist. The machine state reported

in the PEBS record is the machine state after the instruction that causes the PEBS

assist is retired. For instance, if the instructions:

mov eax, [eax] ; causes PEBS assist

nop

are executed, the PEBS record will report the address of the nop, and the value of

EAX in the PEBS record will show the value read from memory, not the target

address of the read operation.

The PEBS record format is shown below, and each field in the PEBS record is 64 bits

long. This record format does not change regardless of IA32 or IA32e mode

(compatibility or 64-bit mode). This behavior is different from previous

implementations. Fields that are new to NHM are shaded.

Table 15: PEBS Record Format

Byte

Offset

Field Byte

Offset

Field

0x00 R/EFLAGS 0x58 R9

0x08 R/EIP 0x60 R10

0x10 R/EAX 0x68 R11

0x18 R/EBX 0x70 R12

0x20 R/ECX 0x78 R13

0x28 R/EDX 0x80 R14

0x30 R/ESI 0x88 R15

0x38 R/EDI 0x90 IA32_PERF_GLOBAL_STATUS

0x40 R/EBP 0x98 Data Linear Address

0x48 R/ESP 0xA0 Data Source Encoding

0x50 R8 0xA8 Latency Value (core cycles)

1. If the processor is operating in IA32 (32-bit) mode, then the 32-bit values of

each register are written. The upper 32 bits in each field is written to zeroes.

Fields for registers that are not defined in IA32 mode are written to zero.

2. In IA32e mode, the full 64 bit value of each register is written.

3. Shaded fields are new to NHM.

4. Fields related to the load latency facility will be discussed in section 3.7.

 IA32_PERF_GLOBAL_STATUS

The value written to this field is the state of the IA32_PERF_GLOBAL_STATUS

register before the PEBS assist occurred. This value is written so software can

determine which counters overflowed when this PEBS record was written. Note

that this field indicates the overflow status for all counters, regardless of whether

they were programmed for PEBS or not.

 Data Linear Address

 Data Source

 Latency Value

These fields will be described in section 3.7.

Upon writing the PEBS record, microcode clears the overflow status bits in the

IA32_PERF_GLOBAL_STATUS corresponding to those counters that overflowed and

were enabled in the IA32_PEBS_ENABLE register. The status bits of other counters

remain unaffected.

3.5.3. Programming the PEBS Facility

Software programs the PEBS facility by programming PEBS-enabled (precise) events

in the PMU as described in section 3.2.1. Precise events are a subset of the total

events supported by the PMU, and are listed in table 0. The PEBS hardware is

enabled by setting the appropriate bit in the IA32_PEBS_ENABLE register for each

counter programmed with a precise event.

Software must also initialize the DS_BUFFER_MANAGEMENT_AREA data structure in

memory which further describes the PEBS configuration. The PEBS-related fields of

this data structure are shown below. The beginning linear address of this data

structure must be programmed into the IA32_DS_AREA register.

The overall relationship between the IA32_DS_AREA MSR, the

DS_BUFFER_MANAGEMENT_AREA, the PEBS record buffer, and the branch record

buffer is shown below.

Figure 11: PEBS Programming Overview

 PEBS Buffer Base

This field is programmed with the linear address of the first byte of the PEBS buffer

allocated by software. Microcode reads this field to determine the base address of

the PEBS buffer. Software should allocate this memory from the non-paged pool.

 PEBS Index

This field is initially programmed with the same value as the PEBS Buffer Base field,

or the beginning linear address of the PEBS buffer. Microcode reads this field to

determine the location of the next PEBS record to write. After a PEBS record has

been written, microcode updates this field with the address of the next PEBS record

DS Buffer

Management Area:

IA32_DS_AREA MSR

BTS Buffer Base

BTS Index

BTS Abs Max

BTS Int Thresh

PEBS Buffer Base

PEBS Index

PEBS Abs Max

PEBS Int Thresh

PEBS Counter 0 Reset

PEBS Counter 1 Reset

PEBS Counter 2 Reset

PEBS Counter 3 Reset

PEBS Record 0

New in NHM

Not relevant to PEBS programming.

PEBS Buffer:

PEBS Record 1

PEBS Record 2

…

PEBS Record i-

1

PEBS Record i

…

PEBS Record N

PEBS Record N-

1

to be written. The figure above illustrates the state of PEBS Index after the first

PEBS record is written.

 PEBS Abs Max

This field represents the absolute maximum length of the PEBS buffer and is

programmed with the linear address of the first byte past the end of the PEBS

buffer. This indicates to microcode where the PEBS buffer ends.

 PEBS Int Thresh

This field represents the interrupt threshold and allows software to receive an

interrupt notification indicating that the PEBS buffer is nearly exhausted. This field

is programmed with the linear address of the first byte of the PEBS record within

the PEBS buffer that represents the threshold record. After writing a PEBS record,

microcode checks the address of the next record to be written with the value of this

field. If they are the same, microcode causes a performance interrupt. This is the

same interrupt that is generated by a counter overflow, as programmed in the

Performance Monitoring Counters vector in the Local Vector Table of the Local APIC.

When this interrupt is generated the IA32_PERF_GLOBAL_STATUS.PEBS_Ovf bit will

be set.

 PEBS Counter X Reset

This field allows software to set up PEBS counters to repeatedly trigger, generating

multiple PEBS records. In this way, software can profile the execution of test code

as desired. After each PEBS record is written, microcode checks each counter to see

if it overflowed and was enabled for PEBS (the corresponding bit in

IA32_PEBS_ENABLED is set). If these conditions are satisfied, then microcode reads

the reset value for that counter from the DS Buffer Management Area and sets the

counter to that value. For instance, if counter IA32_PMC0 caused a PEBS record to

be written, then the value of “PEBS Counter 0 Reset” would be written to counter

IA32_PMC0. If a counter is not enabled for PEBS, its value will not be modified by

the PEBS assist. Software must specify the entire 48-bit value to be written to the

counter register in this field. Unlike when using the wrmsr instruction, the value

contained in this field is written to the counter register as is, and is not sign

extended from bit 31.

When profiling test code, software typically desires to collect PEBS records or event

data for every N events, where N is chosen to be a value that will provide

statistically significant samples while not generating excessive intrusion. To

accomplish this counters are typically pre-loaded with the value of negative N (-N),

so that the counter will count up and overflow causing an interrupt for every N

events detected.

Note that the PEBS buffer is not treated as a circular buffer. Each time a PEBS

record is written, microcode updates the “PEBS Index” field to the linear address of

the next PEBS record to write. Once this value becomes equal to that contained in

the “PEBS Abs Max” field, microcode will simply stop writing PEBS records. No faults

will be generated. To re-enable the PEBS buffer, software must reset the value of

the “PEBS Index” field back to the base linear address of the PEBS buffer.

If software desires to take an interrupt for each PEBS record that is written, it may

program the “PEBS Int Thresh” field with the linear address of the first byte of the

second PEBS record in the PEBS buffer (PEBS Record 1 in the figure above). In this

case, microcode will determine that the PEBS interrupt threshold was reached each

time a PEBS record is written, and will trigger and PMI.

The definition of the IA32_DS_AREA MSR Definition is shown in the figure below.

This MSR holds the linear address of the first byte of the IA32_DS_AREA memory

buffer. All 64-bits must be programmed.

Figure 12: IA32_DS_AREA MSR Definition

3.6. Counter Prioritization

The interaction between counter overflows, PEBS, and interrupts is rather complex.

This section addresses these complexities. Some background information is in order.

Counter overflow interrupts are triggered by a counter transitioning from maximum

count to zero (assuming PerfEvtSelX.INT is set). This same transition will cause

PEBS hardware to arm, but not trigger. PEBS hardware triggers upon detection of

the first PEBS event after the PEBS hardware has been armed (a 0 to 1 transition of

the counter). At this point, a PEBS assist will occur, which causes control to

transition to microcode to handle the PEBS assist.

 0 7 15

23

31

32 39 47

55

63

 Reset Value: 0x00000000.00000000

Reserved

.

Counters (fixed and general) are prioritized in index order. That is, counter

IA32_PMC0 takes precedence over all other counters. Counter IA32_PMC1 takes

precedence over counters IA32_PMC2 and IA32_PMC3, and so on. This means that

if simultaneous overflows or PEBS assists occur, the appropriate action will be taken

for the highest priority counter. For instance, if IA32_PMC1 and IA32_PMC2

simultaneously cause an overflow interrupt and PEBS assist, respectively, then the

overflow interrupt will be serviced first. The PEBS threshold interrupt is triggered

by the PEBS assist, and is by definition prioritized lower than the PEBS assist.

Hardware will not generate separate interrupts for each counter that simultaneously

overflows. General (programmable) counters are prioritized over fixed counters.

If a counter is programmed with a precise (PEBS-enabled) event and programmed to

generate a counter overflow interrupt, the PEBS assist is serviced before the

counter overflow interrupt is serviced. If in addition the PEBS interrupt threshold is

met, the threshold interrupt is generated after the PEBS assist completes, followed

by the counter overflow interrupt (two separate interrupts are generated).

Un-core counters may be programmed to interrupt one or more processor cores. It is

possible for interrupt posted from the un-core to occur coincident with core counter

overflow interrupts. Software must check core and un-core status registers to

determine the precise source of counter overflow interrupts.

3.7. The Load Latency Facility

The load latency facility provides software a means to characterize load latency to

different levels of the memory hierarchy. This facility is used in conjunction with the

PEBS facility and is new in NHM processors. The facility measures latency from

micro-operation (uop) dispatch to when data is globally observable (GO).

To use this feature software must assure:

1) A hardware counter is programmed with the MEM_INST_RETIRED event, and

the LATENCY_ABOVE_THRESHOLD event mask must be specified

(PerfEvtSelX[15:0] = 0x100B). The counter will accumulate event counts

for architecturally visible loads which exceed the programmed latency

threshold. Stores are ignored when this event is programmed.

Software must not program the CMASK or INV fields of the PerfEvtSelX

register used for load latency (see Figure 7). Doing so will result in undefined

behavior.

2) The PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired

latency threshold in core clock cycles. Loads with latencies greater than this

value are eligible for counting and latency data reporting. The minimum value

that may be programmed in this register is 3 (the minimum detectable load

latency is 4 core clock cycles).

3) The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the

corresponding counter register (see Figure 10). This means that both the

PEBS_EN_CTRX and LL_EN_CTRX bits must be set for the counter(s) of

interest. For example, to enable load latency on counter zero, the

IA32_PEBS_ENABLE register must be programmed with the 64-bit value

0x00000001.00000001.

When this facility is enabled hardware randomly tags load instructions to carry

latency information, which is used to update internal data and source registers.

These internal registers are continuously updated as each tagged load instruction

retires.

When a PEBS assist occurs, the last value written to these internal registers will be

read and subsequently written as part of the PEBS record. The PEBS sample after

value (SAV) operates orthogonally to the instruction tagging mechanism. When

enabled, the instruction tagging mechanism randomly tags memory load instructions

from which to collect latency data. The SAV determines the number of qualified

memory load instructions that will have to retire before a PEBS assist will be

generated. The load latency data written to the PEBS record will be for the last

qualified memory load instruction which retired just before the PEBS assist was

invoked.

The hardware used to tag memory load instructions is shown in the figure below. It

is a 17-bit, maximal length linear feedback shift register (LFSR) which generates a

pseudo-random stream of 1‟s and 0‟s. Bits 14 and 17 are tapped to provide a

pseudo-random sequence, and bits 14 through 17 are logically AND‟ed together to

generate the select signal.

Figure 13: LFSR for Tagging Memory Load Instructions

Given this configuration, each PEBS record written will contain load latency

information, as shown in the shaded areas in Table 15.

 Data Linear Address

This is the linear address of the target of the load instruction. This address is non-

canonical address. The lower 48 bits of the address are valid.

 Latency Value

This is the actual latency of the load in core clock cycles.

 Data Source

This value indicates the origin of the data obtained by the load instruction, and takes

on the value of zero to fifteen, inclusive. The encoding for this value is shown in the

table below. In the descriptions local memory refers to memory physically attached

to this package, and remote memory referrers to memory physically attached to

another package. These descriptions also refer to cache line states exclusive (E),

shared (S), modified (M), invalid (I), and forward (F). Details of the MESI protocol are

beyond the scope of this document.

Table 16: Data Souce Encodings in Load Latency Records

Encoding Description

0x0 Unknown LLC cache miss

0x1
Minimal latency core cache hit. This request was satisfied by the data

cache.

0x2
Pending core cache HIT. Outstanding core cache miss to same cache-line

address was already underway.

0x3 This data request was satisfied by the MLC.

0x4
LLC HIT. Local or Remote home requests that hit last level cache in the

uncore with no coherency actions required (snooping).

0x5

LLC HIT. Local or Remote home requests that hit the last level cache and

was serviced by another core with a cross core snoop where no modified

copies found. (clean).

0x6

LLC HIT. Local or Remote home requests that hit the last level cache and

was serviced by another core with a cross core snoop where modified

copies found. (HITM).

0x7 Reserved.

0x8

LLC MISS. Local homed requests that missed the last level cache and was

serviced by forwarded data following a cross package snoop where no

modified copies found. (Remote home requests are not counted).

0x9
LLC MISS. Local or Remote home requests that missed the last level

cache and was serviced by forwarded data following a cross package

snoop where a modified copy was found and coherency actions taken.

(Not supported until WSM-T0).

0xA
LLC MISS. Local home requests that missed the last level cache and was

serviced by local DRAM (go to shared state).

0xB
LLC MISS. Remote home requests that missed the last level cache and

was serviced by remote DRAM (go to shared state).

0xC
LLC MISS. Local home requests that missed the last level cache and was

serviced by local DRAM (go to exclusive state).

0xD
LLC MISS. Remote home requests that missed the last level cache and

was serviced by remote DRAM (go to exclusive state).

0xE Reserved.

0xF The request was to un-cacheable memory.

The figure below shows the programming for the PEBS_LD_LAT_THRESHOLD

register.

Figure 14: PEBS_LD_LAT_THRESHOLD MSR Definition

Table 17: PEBS_LD_LAT_THRESHOLD Programming

Bit Bit

Position

Access Description

LD_LAT_THRESH 15:0 RW The threshold load latency in core clock

cycles. Events with latencies greater than

this value are counted and their latency

information is reported in the PEBS record.

 0 7 15

23

31

32 39 47

55

63

 Reset Value: 0x00000000.00000000

Reserved

.

LD_LAT_THRESH

Otherwise, they are ignored. The minimum

value that may be programmed in this field

is 0x3.

3.8. The Last Branch Record Facility

This facility provides a means to capture the branch trace messages (BTM) in either

an on-chip stack or memory buffer. Branch trace messages provide the source and

destination addresses for executed branch instructions. The facility also provides a

means for transmission of BTMs as a special cycle over the system bus, but details

of that capability are beyond the scope of this document. Software directs the

destination of the BTMs by programming certain bits in the IA32_DEBUGCTL MSR,

and by optionally programming certain fields of the DS Buffer Management Area, as

will be shown below.

If IA32_DEBUGCTL.BTS (bit 7) is set, enabling the BTS mechanism, then software

must initialize the BTS fields in the DS Buffer Management Area. It is not possible to

simultaneously store BTMs via the System Bus and to the BTS buffer.

Capturing BTMs in the on-chip LBR stack is enabled by setting IA32_DEBUGCTL.LBR

(bit 0). The on-chip LBR stack was extended on NHM to sixteen pairs of source and

target addresses, as opposed to only four pairs in previous implementations. The

details for programming this facility are summarized below.

Table 18: Programming the BTS Facility

IA32_DEBUGCTL Description

TR BTS BTS_O

FF_OS

BTS_

OFF_

USR

BTINT

0 X X X X Branch trace messages (BTMs) off.

1 0 X X X BTMs are transmitted via a special bus cycle

on the system bus.

1 1 0 0 01 All branches are recorded in the BTS

(memory buffer).

1 1 1 0 01 Branches occurring when CPL greater than

zero are recorded in the BTS.

1 1 0 1 01 Branches occurring when CPL is equal to

zero are recorded in the BTS.

1 1 1 1 X BTMs are transmitted via a special bus cycle

on the system bus.

1 1 0 0 12 All branches are recorded in the BTS.

1 1 1 0 12 Branches occurring when CPL greater than

zero are recorded in the BTS.

1 1 0 1 12 Branches occurring when CPL is equal to

zero are recorded in the BTS.

1The BTS is treated as a circular buffer.

2Upon reaching the BTS interrupt threshold a Performance Monitoring interrupt will

be generated. If the BTS_Index field in the DS Buffer Management Area is not

reinitialized and the BTS_Abs_Max value is exceeded, the processor will stop writing

BTMs.

3.8.1. LBR Filtering

Nehalem introduces the ability to filter the capture of LBR information based on

various conditions. NHM allows software to allow or disallow capturing LBR data

based on current privilege level, branches taken due to relative or indirect calls and

jumps, and other conditions. When filtering is set, branch trace information is not

captured in the branch trace store memory buffer or last branch record stack.

Programming this filtering capability is detailed in the figure and table below.

Figure 15: LBR_SELECT MSR Programming

 0 7 15

23

31

32 39 47

55

63

 Reset Value: 0x00000000.00000000

Reserved

.

CPL_EQ_0

CPL_NEQ_0

JCC

NEAR_REL_CALL

NEAR_IND_CALL

NEAR_RET

NEAR_IND_JMP

NEAR_REL_JMP

FAR_BRANCH

Table 19: LBR_SELECT Programming

Bit Bit

Position

Access Description

CPL_EQ_0 0 RW When set do not capture branches occurring in ring 0.

CPL_NEQ_0 1 RW When set do not capture branches occurring in CPL

other than ring 0.

JCC 2 RW When set do not capture conditional branches.

NEAR_REL_CALL 3 RW When set do not capture near relative calls.

NEAR_IND_CALL 4 RW When set do not capture near indirect calls.

NEAR_RET 5 RW When set do not capture near returns.

NEAR_IND_JMP 6 RW When set do not capture near unconditional indirect

jumps.

NEAR_REL_JMP 7 RW When set do not capture near unconditional relative

branches.

FAR_BRANCH 8 RW When set do not capture far branches.

3.8.2. Storing Branch Trace Messages in the Branch Trace Store

When the BTS mechanism is enabled BTMs are written to the BTS memory buffer.

The format of BTMs written to the BTS is shown in the figure below.

Figure 16: Format of Branch Trace Message in Branch Trace Store

Microcode writes the source and destination linear addresses of the branch

instruction for which this record was written. This record format does not change

regardless of IA32 or IA32e mode, but in IA32 mode only the lower 32 bits of the

linear addresses will be meaningful. The Branch Predicted bit indicates if this branch

Last Branch From

Last Branch To

Branch Predicted

4

was predicted or not. If this bit is set, the branch was predicted. Otherwise, the

branch was not predicted (miss-predicted).

Software indicates the location of the BTS buffer by initializing the DS Buffer

Management Area, which is also used in a similar fashion for the PEBS facility.

Software initializes the following fields of the DS Buffer Management area:

 BTS Buffer Base

This is the base linear address of the first byte of the BTS memory buffer.

Microcode reads this field to determine the base address of the BTS buffer.

Software should allocate this memory from the non-paged pool.

 BTS Index

This field is initially programmed with the same value as the BTS Buffer Base field,

or the beginning linear address of the BTS buffer. Microcode reads this field to

determine the location of the next BTM record to write. After a BTM record has

been written, microcode updates this field with the address of the next BTM record

to be written. The figure above illustrates the state of BTS Index after the first BTM

record is written.

 BTS Abs Max

This field represents the absolute maximum length of the BTS buffer and is

programmed with the linear address of the first byte past the end of the BTS buffer.

This indicates to microcode where the BTS buffer ends.

If IA32_DEBUGCTL.BTINT (Bit 8) is clear, then the BTS buffer is treated as a circular

buffer. When the BTS buffer is full, as defined by this field, microcode will wrap to

the beginning of the buffer and overwrite the first record location with the latest

BTM.

If IA32_DEBUGCTL.BTINT is set, then BTMs will not be written beyond this limit, and

data will potentially be lost.

 BTS Int Thresh

If IA32_DEBUGCTL.BTINT is clear, this field is ignored and the BTS is treated as a

circular buffer. No threshold interrupt is generated.

When IA32_DEBUGCTL.BTINT is set, this field is used and represents the interrupt

threshold, allowing software to receive an interrupt notification indicating that the

BTS buffer is nearly exhausted. Software can detect this overflow condition if the

value of the BTS Index field equals or exceeds the value of this field.

This field is programmed with the linear address of the first byte of the BTM record

within the BTS buffer that represents the threshold record. After writing a BTM

record, microcode checks the address of the next record to be written with the

value of this field. If they are the same, microcode causes a performance interrupt.

This is the same interrupt that is generated by a counter overflow, as programmed

in the Performance Monitoring Counters vector in the Local Vector Table of the Local

APIC.

Figure 17: Branch Trace Store Programming Overview

3.8.3. Storing Branch Trace Messages in the Last Branch Record

Stack

By setting the IA32_DEBUGCTL.LBR (Bit 0) control bit, software enables storage of

BTMs in the on-chip LBR stack. This stack consists of sixteen pairs of MSRs which

hardware writes as branch instructions are executed. Hardware writes this stack in

a circular fashion, from lowest to highest indexed last-branch registers, and

MSR_LASTBRANCH_TOS register contains an index (0-15) which refers to the most

recent BTM written to the LBR stack. Software reads these MSR pairs to obtain the

source and target addresses of the branch instructions.

IA32_DS_AREA MSR

BTS Buffer Base

BTS Index

BTS Abs Max

BTS Int Thresh

PEBS Buffer Base

PEBS Index

PEBS Abs Max

PEBS Int Thresh

PEBS Counter 0 Reset

PEBS Counter 1 Reset

PEBS Counter 2 Reset

PEBS Counter 3 Reset

BTM Record 0

Not relevant to BTS programming.

BTS Buffer:

BTM Record 1

BTM Record 2

…

BTM Record i-1

BTM Record i

…

BTM Record N

BTM Record N-1

DS Buffer

Management Area:

The bit field IA32_PERF_CAPABILITIES[5:0] indicates the format of the LBR stack

records. The figures and tables below detail this format as contained by the “from”

and “to” data registers. Details of the top-of-stack MSR are also shown.

Figure 18: MSR_LASTBRANCH_x_FROM_IP MSR Definition

Table 20: MSR_LASTBRANCH_x_FROM_IP Programming

Bit Bit

Position

Access Description

DATA 47:0 RO The linear address of the branch instruction itself.

This is the “branch from” address.

SIGN_EXT 62:48 RO The sign extension of bit 47 of this register.

MISPRED 63 RO When set, indicates the branch was predicted.

Otherwise, the branch was not predicted (mis-

predicted).

 0 7 15

23

31

32 39 47

55

63

 Reset Value: 0x00000000.00000000

Reserved

.

Data[31:0]

Data[32:47]
SIGN_EXT

MISPRED

Figure 19: MSR_LASTBRANCH_x_TO_IP MSR Definition

Table 21: MSR_LASTBRANCH_x_TO_IP Programming

Bit Bit

Position

Access Description

DATA 47:0 RO The linear address of the target of the branch

instruction. This is the “branch from” address.

SIGN_EXT 63:48 RO Sign extension of bit 47 of this register.

 0 7 15

23

31

32 39 47

55

63

 Reset Value: 0x00000000.00000000

Reserved

.

Data[31:0]

Data[32:47] SIGN_EXT

Figure 20: MSR_LASTBRANCH_TOS MSR Definition

Table 22: MSR_LASTBRANCH_TOS Programming

Bit Bit

Position

Access Description

TOS 3:0 RO Contains the index of the register pair that contains the

most recent BTM recorded in the LBR stack. To read the

complete LBR stack, software will start reading BTMs

from this location, to the end of the LBR stack (highest

indexed register pair), then wrap and continue reading

from the lowest indexed register pair to the register pair

indexed by TOS – 1.

3.9. The RDPMC Instruction

All of the counter and counter control registers in the NHM core are implemented as

model specific registers (MSR). There are two general instructions that allow

software to access these registers: rdmsr (read an MSR) and wrmsr (write an MSR).

The rdmsr instruction can be used to read the counter registers to obtain event

counts as desired. However, due to constraints imposed on this more general

instruction its latency is relatively high. Therefore, software is strongly encouraged

to use the rdpmc instruction when reading counter registers, which improves read

latency by approximately 50%. The rdpmc instruction may be used to read general

and fixed counter registers by preloading the correct index value in the ECX register

and executing the instruction.

 0 7 15

23

31

32 39 47

55

63

Reset Value: 0x00000000.00000000

Reserved

.

TOS

51

Table 23: Legal Index (ECX) Values for Executing the RDPMC Instruction

ECX Value: Reads:

0 IA32_PMC0

1 IA32_PMC1

21 IA32_PMC2

31 IA32_PMC3

0x40000000 PERF_FIXED_CTR0

0x40000001 PERF_FIXED_CTR1

0x40000002 PERF_FIXED_CTR2

1 New in Nehalem.

Note: Using any values for ECX other than those listed

above will cause a general protection fault when this

instruction is executed.

52

4. Detecting the Nehalem Processor

To properly program the PMU facilities, software must obviously detect the

presence of a Nehalem-based product. The following sections provide the

information necessary for software to properly detect and configure for the

Nehalem core and uncore PMUs.

4.1. CPUID identification

Software may use leaf one of the CPUID instruction (execute the CPUID instruction

with the EAX register set to a value of 0x1, or CPUID.1 for short), and obtain the

family, model, and stepping designations of the product.

While the Nehalem Core PMU architecture is consistent across all Nehalem

implementations, uncore PMU architecture implementations may vary across the

product line. However, the processor signature (family, model, and stepping)

obtained from the CPUID instruction may still be used to uniquely identify the core

and uncore PMU features. These details are summarized in the table below.

Table 24: Nehalem CPUID Processor Signatures

Processor Code

Name

Extended

Family

[27:20]

Extended

Model

[19:16]

Type

[13:12]

Family

ID

[11:8]

Model

[7:4]

Stepping

ID [3:0]

Composite

Value

(CPUID.1.EAX)

Nehalem-EP 2S

(Gainstown)
0x00 0x1 0x0 0x6 0xA 0xn 0x000106An

Nehalem-EP 1S

(Bloomfield)
0x00 0x1 0x0 0x6 0xA 0xn 0x000106An

Nehalem-EX

(Beckton)
0x00 0x2 0x0 0x6 0xE 0xn 0x000206En

Note: This information is subject to change without notice.

4.2. Architectural PerfMon

Nehalem-based products conform to version 3.0 of the Architectural Core

Performance Monitoring (ACPM) specification. This architecture enables software to

confirm the presence of processor core PMU resources and enumerate their

capabilities. It has no bearing on the uncore PMU resources. For more information

refer to the ACPM specification or the Intel® 64 and IA-32 Architectures Software

Developer‟s Manual Volume 2B (reference the CPUID instruction).

ACPM provides a means by which software can detect the core PMU resources

available on a particular product implementation. By executing leaf “A” of the CPUID

instruction (CPUID.A), software can detect the version of the architectural

53

implementation of the PMU, the number and extent of general and fixed counters,

and the architectural events which are available. After executing CPUID.A the

registers EAX, EBX, and EDX contain the values described in the table below.

Table 25: CPUID.A Information

Register Bit Field Description Comments

EAX

7:0 Version ID

Indicates the version of the Architectural

Core Performance Monitoring specification

that applies to this product.

15:8
General

Counters

Indicates the number of general

(programmable) counters implemented in

this product.

23:16
Counter

Width

Indicates the width in bits of each general

counter. For instance, a value of 0x30

indicates a 48-bit counter.

31:24
Vector

Length

Indicates the length of the bit vector

contained in the EBX register.

EBX

Variable

(see length

specified by

EAX[31:24])

Architectural

Events

Vector

Indicates which architecturally defined

events are supported in this product

implementation. A value of zero in a bit

position indicates that the event

represented by that bit is supported. The

following architectural events are defined:

Bit 0 – Core Cycles

Bit 1 – Instructions Retired

Bit 2 – Reference Cycles

Bit 3 – Last-level Cache References

Bit 4 – Last-level Cache Misses

Bit 5 – Branch Instructions Retired

Bit 6 – Branch Miss-predicts Retired

EDX

4:0
Fixed

Counters

Indicates the number of fixed function

counters available on this product

implementation.

12:5
Counter

Width

Indicates the width in bits of each fixed

function counter.

54

4.3. Other Considerations

Software must first check the IA32_MISC_ENABLE MSR to verify that performance

monitoring facilities and the PEBS facility are available. If bit 7 of this register is set,

then the performance monitoring features of the processor core are available. If bit

12 of this register is clear, then the PEBS facility is available. Refer to the Intel® 64

and IA-32 Architectures Software Developer‟s Manual Volume 3B for more details.

Software may also query the IA32_PERF_CAPABILITIES register to ascertain

additional details of the PEBS facility. Please refer to section 3.1.1 for more

information.

Appendix A: Precise (PEBS-enabled) Events

Event Name Event

Encoding

Sub-event Name Event

Mask

MEM_INST_RETIRED 0x0B

LOADS 0x01

STORES 0x02

LATENCY_ABOVE_THRESHOLD 0x10

MEM_STORE_RETIRED 0x0C

STORE_MISS_IN_LAST_LEVEL_DTL

B
0x01

DROPPED_EVENTS 0x02

MEM_UNCORE_EVENT_R

ETIRED
0x0F

LLC_DATA_MISS 0x01

OTHER_CORE_L2_HIT 0x02

OTHER_CORE_L2_HITM 0x04

REMOTE_CACHE_HIT 0x08

REMOTE_CACHE_HITM 0x10

LOCAL_DRAM 0x20

NON_LOCAL_DRAM 0x40

IO 0x80

INST_RETIRED 0xC0

ALL 0x01

FP 0x02

MMX 0x04

OTHER_ASSISTS 0xC1 PAGE_A/D_ASSISTS 0x01

UOPS_RETIRED 0xC2

ALL_EXECUTED 0x01

RETIRE_SLOTS 0x02

MACRO_FUSED 0x04

BR_INST_RETIRED 0xC4

CONDITIONAL 0x01

NEAR_CALL 0x02

ALL_BRANCHES 0x04

BR_MISP_RETIRED 0xC5 CONDITIONAL 0x01

56

NEAR_CALL 0x02

ALL_BRANCHES 0x04

SSEX_UOPS_RETIRED 0xC7

PACKED_SINGLE 0x01

SCALAR_SINGLE 0x02

PACKED_DOUBLE 0x04

SCALAR_DOUBLE 0x08

VECTOR_INTEGER 0x10

ITLB_MISS_RETIRED 0xC8 ITLB_MISS 0x20

MEM_LOAD_RETIRED 0xCB

LOAD_HIT_L1 0x01

LOAD_HIT_L2_MLC 0x02

LOAD_HIT_L3_LLC 0x04

LOAD_HIT_OTHER_PM_PKG_L2 0x08

LLC_MISS 0x10

DROPPED_EVENTS 0x20

LOAD_HIT_LFB_BUT_MISSED_IN_L

1
0x40

LOAD_MISS_IN_LAST_LEVEL_DTLB 0x80

BR_CND_MISPREDICTION 0xEB BIMODAL 0x10

FP_ASSISTS 0xF7

ALL 0x01

OUTPUT 0x02

INPUT 0x04

57

Appendix B: Core PMU MSR List
Table 26: NHM Core PMU Register List

Name MSR

Address

IA32_PMC0 0xC1

IA32_PMC1 0xC2

IA32_PMC2 0xC3

IA32_PMC3 0xC4

PerfEvtSel0 0x186

PerfEvtSel1 0x187

PerfEvtSel2 0x188

PerfEvtSel3 0x189

IA32_MISC_ENABLE 0x1A0

OFFCORE_RSP_0 0x1A6

OFFCORE_RSP_1 0x1A7

LBR_SELECT 0x1C8

MSR_LASTBRANCH_TOS 0x1C9

IA32_DEBUGCTL 0x1D9

PERF_FIXED_CTR0 0x309

PERF_FIXED_CTR1 0x30A

PERF_FIXED_CTR2 0x30B

IA32_PERF_CAPABILITIES 0x345

IA32_FIXED_CTR_CTRL 0X38D

IA32_PERF_GLOBAL_STATUS 0x38E

IA32_PERF_GLOBAL_CTRL 0x38F

IA32_PERF_GLOBAL_OVF_CTRL 0x390

IA32_PEBS_ENABLE 0x3F1

PEBS_LD_LAT_THRESHOLD 0x3F6

IA32_DS_AREA 0x600

MSR_LASTBRANCH_x_FROM_IP (0 ≤ x ≤ 15) 0x680-

58

0x68F

MSR_LASTBRANCH_x_TO_IP (0 ≤ x ≤ 15) 0x6C0–

0x6CF

59

Copyright© 2010 Intel Corporation, all rights reserved

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,

EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS

GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE

FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY

EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING

LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,

MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL

PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR

INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A

SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked

"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility

whatsoever for conflicts or incompatibilities arising from future changes to them. The information

here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which

may cause the product to deviate from published specifications. Current characterized errata are

available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before

placing your product order.

Any software source code reprinted in this document is furnished under a software license and may

only be used or copied in accordance with the terms of that license.

Copies of documents which have an order number and are referenced in this document, or other Intel

literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/#/en_US_01

This document contains information on products in the design phase of development.

Intel®, Xeon® are trademarks of Intel Corporation in the U.S. and other countries.

http://www.intel.com/#/en_US_01

