Mastering High Performance Multiprocessor Signaling

Electrical design with the Intel® QuickPath Interconnect

By Dave Coleman and Michael Mirmak
Contents

Chapter 1 Intel® QuickPath Interconnect Electrical Architecture Overview

Architecture Overview
 Historical Context and Motivation
 Intel® QuickPath Interconnect Architecture Layer Overview
 Physical Layer Overview
 Architecture Electrical Features and Definitions
 Link and Port Definitions
 Signaling and Clocking Definitions
 Basis of Timing and Signal Quality Budgeting
 Other Signaling Requirements
 Link Initialization and Training
 Technology and Interoperability

Chapter 2 Electrical Specification Overview

The Specification Approach
 Interconnect Topologies and Components
 Essential Electrical Specification Concepts
 Differential Signaling
 Unit Interval (UI), Signal Eye and Eye Mask
 Signal Jitter and Duty Cycle Distortion
 Electrical Specifications
 Common Specifications
Chapter 3 Controlling the Impact of Signal Integrity Phenomena
Signal Propagation or Delay
Crosstalk
 NEXT and FEXT
Reflective Effects
Impedance Matching
Loss
Jitter
Differential Routing versus Differential Receivers
Drivers and Equalization
Receivers and Terminations
Connectors, Sockets, and Packages
Interconnect Traces and Breakouts
Vias
Performance Budgeting: Eye Diagrams
Bit Error Rate (BER)

Chapter 4 Time and Frequency Domain Modeling and Simulation
Linear and Time-Invariant Systems
Time-Domain Modeling
 Transmitter Modeling
 Receiver Modeling
 Interconnect Component Modeling
Time-Domain Analysis
 Analysis Types
 ISI and Crosstalk
 Jitter
 Characterization Locations
 Electrical Simulation Setup
 Simulation Flow
 Eye Diagram Analysis
Frequency-Domain Modeling
 Frequency Domain Transmitter Modeling
 Frequency Domain Receiver Modeling
 Frequency Domain Interconnect Component Modeling
Frequency Domain Analysis
Chapter 5 **System Layout Design Essentials**

Successful Interconnect Design
System-level Floor Planning
 Topologies and Configurations
 Interconnect Length and Transfer Rate Considerations
Specification-based Factors Affecting Layout
Reference Clock Considerations

Chapter 6 **Printed Circuit Board Design Considerations**

Printed Circuit Board Material Properties
Stackup Configurations and Tradeoffs
 Multi-layer Signal Trace Routing
 Impedance
Signal Trace Routing
 Differential Pair Length and Trace Matching
 Bends and Serpentes
 Breakouts
 Trace Dimensions and Spacing
 Vias
 Reference Planes
 Connectors
 Probing

Chapter 7 **Validation and Measurement**

Oscilloscope and Probing Requirements
 Real time vs. Sampling Oscilloscopes
 Minimum Bandwidth and Sampling Requirements
 Single-ended vs. Differential Probing
 Effects of Probe Capacitance
 Other Scope Inaccuracies
 VNAs
Measuring and Validating the Specifications
 Validating Compliance to the Specifications
 The Intel® QuickPath Jitter Specifications
 The Tx and Rx Signal Quality Specifications
 Rise and Fall Time
Chapter 8 Measurement Setup and Data Acquisition

Measurement Setup and Data Acquisition
Compliance and Loopback
Oscilloscope Calibration and Deskew
Test Platform Setup
Intel® QuickPath Interconnect Test Load Board
Transmitter Measurements (Oscilloscope settings and details)
Channel Measurements using a VNA
BERT and JBERT Measurements
Measurement Post-processing
Probing and Footprint Requirements
Test Pads and Probe Points
Building Good Probing Footprints